首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
We have shown previously that norepinephrine (NE) microdialyzed into the preoptic area (POA) of conscious guinea pigs stimulates local PGE(2) release. To identify the cyclooxygenase (COX) isozyme that catalyzes the production of this PGE(2) and the adrenoceptor (AR) subtype that mediates this effect, we microdialyzed for 6 h NE, cirazoline (alpha(1)-AR agonist), and clonidine (alpha(2)-AR agonist) into the POA of conscious guinea pigs pretreated intrapreoptically (intra-POA) with SC-560 (COX-1 inhibitor) or nimesulide or MK-0663 (COX-2 inhibitors) and measured the animals' core temperature (T(c)) and intra-POA PGE(2) responses. Cirazoline induced T(c) rises promptly after the onset of its dialysis without altering PGE(2) levels. NE and clonidine caused early falls followed by late rises of T(c); intra-POA PGE(2) levels were closely correlated with this thermal course. COX-1 inhibition attenuated the clonidine-induced T(c) and PGE(2) falls but not the NE-elicited hyperthermia, but COX-2 inhibition suppressed both the clonidine- and NE-induced T(c) and PGE(2) rises. Coinfused cirazoline and clonidine reproduced the late T(c) rise of clonidine but not its early fall and also not the early rise produced by cirazoline; on the other hand, the PGE(2) responses were similar to those to NE. Prazosin (alpha(1)-AR antagonist) and yohimbine (alpha(2)-AR antagonist) blocked the effects of their respective agonists. These results indicate that alpha(1)- and alpha(2)-AR agonists microdialyzed into the POA of conscious guinea pigs evoke distinct T(c) responses: alpha(1)-AR activation produces quick, PGE(2)-independent T(c) rises, and alpha(2)-AR stimulation causes an early T(c) fall and a late, COX-2/PGE(2)-dependent T(c) rise.  相似文献   

2.
Lipopolysaccharide (LPS) administration induces hypothalamic nitric oxide (NO); NO is antipyretic in the preoptic area (POA), but its mechanism of action is uncertain. LPS also stimulates the release of preoptic norepinephrine (NE), which mediates fever onset. Because NE upregulates NO synthases and NO induces cyclooxygenase (COX)-2-dependent PGE(2), we investigated whether NO mediates the production of this central fever mediator. Conscious guinea pigs with intra-POA microdialysis probes received LPS intravenously (2 mug/kg) and, thereafter, an NO donor (SIN-1) or scavenger (carboxy-PTIO) intra-POA (20 mug/mul each, 2 mul/min, 6 h). Core temperature (T(c)) was monitored constantly; dialysate NE and PGE(2) were analyzed in 30-min collections. To verify the reported involvement of alpha(2)-adrenoceptors (AR) in PGE(2) production, clonidine (alpha(2)-AR agonist, 2 mug/mul) was microdialyzed with and without SIN-1 or carboxy-PTIO. To assess the possible involvement of oxidative NE and/or NO products in the demonstrated initially COX-2-independent POA PGE(2) increase, (+)-catechin (an antioxidant, 3 mug/mul) was microdialyzed, and POA PGE(2), and T(c) were determined. SIN-1 and carboxy-PTIO reduced and enhanced, respectively, the rises in NE, PGE(2), and T(c) produced by intravenous LPS. Similarly, they prevented and increased, respectively, the delayed elevations of PGE(2) and T(c) induced by intra-POA clonidine. (+)-Catechin prevented the LPS-induced elevation of PGE(2), but not of T(c). We conclude that the antipyretic activity of NO derives from its inhibitory modulation of the LPS-induced release of POA NE. These data also implicate free radicals in POA PGE(2) production and raise questions about its role as a central LPS fever mediator.  相似文献   

3.
Cytokines, PGE2 and endotoxic fever: a re-assessment   总被引:4,自引:0,他引:4  
The innate immune system serves as the first line of host defense against the deleterious effects of invading infectious pathogens. Fever is the hallmark among the defense mechanisms evoked by the entry into the body of such pathogens. The conventional view of the steps that lead to fever production is that they begin with the biosynthesis of pyrogenic cytokines by mononuclear phagocytes stimulated by the pathogens, their release into the circulation and transport to the thermoregulatory center in the preoptic area (POA) of the anterior hypothalamus, and their induction there of cyclooxygenase (COX)-2-dependent prostaglandin (PG)E(2), the putative final mediator of the febrile response. But data accumulated over the past 5 years have gradually challenged this classical concept, due mostly to the temporal incompatibility of the newer findings with this concatenation of events. Thus, the former studies generally overlooked that the production of cytokines and the transduction of their pyrogenic signals into fever-mediating PGE(2) proceed at relatively slow rates, significantly slower certainly than the onset latency of fever produced by the i.v. injection of bacterial endotoxic lipopolysaccharides (LPS). Here, we review the conflicts between the earlier and the more recent findings and summarize new data that reconcile many of the contradictions. A unified model based on these data explicating the generation and maintenance of the febrile response is presented. It postulates that the steps in the production of LPS fever occur in the following sequence: the immediate activation by LPS of the complement (C) cascade, the stimulation by the anaphylatoxic C component C5a of Kupffer cells, their consequent, virtually instantaneous release of PGE(2), its excitation of hepatic vagal afferents, their transmission of the induced signals to the POA via the ventral noradrenergic bundle, and the activation by the thus, locally released norepinephrine (NE) of neural alpha(1)- and glial alpha(2)-adrenoceptors. The activation of the first causes an immediate, PGE(2)-independent rise in core temperature (T(c)) [the early phase of fever; an antioxidant-sensitive PGE(2) rise, however, accompanies this first phase], and of the second a delayed, PGE(2)-dependent T(c) rise [the late phase of fever]. Meanwhile-generated pyrogenic cytokines and their consequent upregulation of blood-brain barrier cells COX-2 also contribute to the latter rise. The consecutive steps that initiate the febrile response to LPS would now appear, therefore, to occur in an order different than conceived originally.  相似文献   

4.
Acetaminophen (AC) reduces the core temperatures (T(c)) of febrile and non-febrile mice alike. Evidence has been adduced that the selectively AC-sensitive PGHS isoform, PGHS-1b (COX-3), mediates these effects. PGHS-1b, however, has no catalytic potency in mice. To resolve this contradiction, AC was injected intravenously (i.v.) into conscious PGHS-1 gene-sufficient (wild-type (WT)) and -deficient (PGHS-1(-/-)) mice 60 min before or after pyrogen-free saline (PFS) or E. coli LPS (10 microg/kg) i.v. T(c) was monitored continuously; brain and plasma PGE(2) levels were determined hourly. AC at <160 mg/kg did not affect T(c) when given before PFS or LPS; at 160 mg/kg, it caused a approximately 2.5 degrees C T(c) fall in 60 min. LPS given after AC (all doses) induced a approximately 1 degrees C fever, not different from that in AC-untreated mice. But this rise was insufficient to overcome the hypothermia of the 160 mg/kg-treated mice; their T(c) culminated 1 degrees C below baseline. LPS given before AC similarly elevated T(c) approximately 1 degrees C. This rise was reduced to baseline in 30 min by 80 mg AC/kg; T(c) rebounded to its febrile level over the next 30 min. At 160 mg/kg, AC reduced T(c) to 4 degrees C below baseline in 60 min, where it remained until the end of the experiment. WT and PGHS-1(-/-) mice responded similarly to all the treatments. The basal brain and plasma PGE(2) levels of PFS mice and the elevated plasma levels of LPS mice were unchanged by AC at 160 mg/kg; but the latter's brain levels were reduced at 1h, then recovered. Thus, AC could exert an anti-PGHS-2 effect when this enzyme is upregulated in the brain of febrile mice. The hypothermia it induces in non-febrile mice, therefore, is due to another mechanism. PGHS-1b is not involved in either case.  相似文献   

5.
(1) It is generally considered that fever is modulated in the preoptic-anterior hypothalamic area (POA) in response to signaling by pyrogenic cytokines elaborated in the periphery by mononuclear phagocytes and the consequent induction of prostaglandin (PG)E2 in the POA. The mechanism of the centripetal transmission of this pyrogenic signal, however, is controversial. One hypothesis suggests that it is conveyed via the vagus to the nucleus tractus solitarius and from there to the POA via the ventral noradrenergic bundle, causing the intraPOA release of norepinephrine (NE) which then stimulates the production of PGE2. (2) In this article, we review recent data from our laboratory showing that NE microdialyzed into the POA of conscious guinea pigs or injected intracerebroventricularly into conscious mice indeed evokes two distinct core temperature (Tc) rises, viz., one 1-adrenoceptor (AR)-mediated, rapid in onset and PGE2-independent, and the other 2-AR-mediated, delayed and COX-2/PGE2-dependent. (3) We further present new data suggesting that the febrile response of conscious guinea pigs to intraperitoneally injected lipopolysaccharide (LPS) is mediated by intraPOA NE in accord with the above sequence, i.e., via 1-AR to initiate the first, PGE2-independent elevation of Tc, and via 2-AR to induce the delayed production of COX-2-dependent PGE2 and the continued rise of Tc. (4) These results thus validate the presumptive involvement of NE in LPS fever induction in guinea pigs.  相似文献   

6.
7.
The influence of transposing the C-15 hydroxy group of prostaglandin E1 methyl ester (PGE2ME) on gastric antisecretory and antiulcer actions was investigated. The compound (+/-)15-deoxy- 16alpha, beta-hydroxy PGE1ME (SC-28904) was equipotent to the reference standard PGE1ME in suppressing histamine-stimulated gastric secretion in the Heidenhain pouch (HP) dog. In contrast to PGE1ME, SC-28904 was longer acting when administered intravenously and also showed significant oral activity in the histamine-stimulated gastric fistula dog. SC-28904 was also equipotent to PGE1ME (range of active doses of 0.5 to 5.0 mg/kg, s.c.) in inhibiting forced-exertion gastric ulceration in rats. The compound (+/-)15-deocy-17alpha, beta-hydroxy PGE1ME (SC-30963) was an inactive antisecretory agent in the dog at the 1.0 mg/kg i.v. bolus dose. This dose was 100 times greater than the active antisecretory dose of PGE1ME. Likewise, SC-30693, when administered subcutaneously at a 5.0 mg/kg dose, was also totally inactive in preventing gastric ulcers induced by forced exertion in rats. The important implications of this work are that some of the receptor sites for the PGE1 molecule could easily accomodate the side chain hydroxy group either in the C-15 or C-16 position. Moreover, the hydroxy group in the latter position significantly improved the biological activity of PGE1ME.  相似文献   

8.
This study evaluated the participation of mu-opioid-receptor activation in body temperature (T(b)) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic d-Phe-Cys-Try-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP; 0.1-1.0 microg) reduced fever induced by LPS (5.0 microg/kg) but did not change T(b) at ambient temperatures of either 20 degrees C or 28 degrees C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0-10.0 mg/kg, 3.0-30.0 microg, and 1-100 ng, respectively) produced a dose-dependent increase in T(b). Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 microg icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 microg), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2alpha) (500.0 ng) but not the fever induced by IL-1beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE(2) levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.  相似文献   

9.
Effects of misoprostol, a synthetic prostaglandin E1 (PGE1) analogue, on cyclooxygenase-2 (COX-2) protein level and exudate prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) level were investigated in acute carrageenan-induced air pouch inflammation in rats. Treatment with misoprostol (12.5, 25, and 50 microg/kg) has been started in separated groups, 30 min and 2 days before carrageenan injection and it was given twice a day (total of five doses) by orogastric route. Indomethacin, in doses of 0.5 and 5 mg/kg, and specific COX-2 inhibitor SC-58236, in doses of 5, 10, and 20 mg/kg were given 1 h before carrageenan injection by the orogastric route. Misoprostol increased the levels of PGE2 and COX-2 protein at all doses applied. Despite indomethacin and SC-58236 increased the level of COX-2 protein when they used alone, these drugs partially inhibited misoprostol-induced increase in the level of COX-2 protein. Partial inhibition of misoprostol-induced increase in the level of COX-2 protein by indomethacin or SC-58236 may indicate the modulatory roles of endogenous prostaglandins (PGs, especially, PGE2) on the COX-2 expression.  相似文献   

10.
Prostaglandin E2 (PGE2) and 6 keto-PGF1 alpha, the stable metabolite of prostacyclin (PGI2), have been measured in the effluent of perfused rat mesenteric arteries by the use of a sensitive and specific radioimmunoassay (RIA) method. The PGE2 and 6 keto-PGF1 alpha were continuously released by the unstimulated mesenteric artery over a period of 145 min. After 100 min of perfusion the release of PGE2 and 6 keto-PGF1 alpha was 45.1 +/- 8.4 pg/min and 254 +/- 75 pg/min respectively, which is in accord with the general belief that PGI2 is the major PG synthesized by arterial tissue. Angiotensin II (AII) (5 ng/ml) induced an increase of PGE2 and 6 keto-PGF1 alpha release without changing the perfusion pressure. The effect of norepinephrine (NE) injections on release of PGs depended on the duration of the stabilization period. The changes of perfusion pressure induced by NE were not related to changes in release of PGs. Thus, it seems that the increase of PG release induced by AII and NE was due to a direct effect of the drugs on the vascular wall. This may represent an important modulating mechanism in the regulation of vascular tone.  相似文献   

11.
This paper reviews some of our findings which have shown the usefulness of in vitro methods in the study of hypothalamic neurones. (1) Membrane current analyses of dispersed neurones of the rat preoptic and anterior hypothalamus (POA) during thermal stimulation have revealed that warm-sensitive neurones are endowed with a non-inactivating Na+ channel having a high Q10 in the hyperthermic range (35-41 degrees C). (2) A brain slice study has shown that neurones in the organum vasculosum lamina terminalis (OVLT) region have much higher sensitivity to PGE2 than POA neurones. This provides further evidence of a critical role of the OVLT in translation of blood-borne cytokine signals into brain signals for fever induction. (3) Local application of IL-1 beta and IFN alpha altered the activity of thermosensitive (TS) neurones and glucose responsive (GR) neurones in vitro in an appropriate way to produce fever and anorexia. While the responses to IL-1 beta required the local release of prostaglandins, the responses to IFN alpha were found to be mediated by opioid receptor mechanisms. (4) The responses of POA TS neurones and VMH GR neurones to IL-1 beta but not those to IFN alpha, were reversibly blocked by alpha MSH, an endogenous antipyretic peptide. Thus, immune cytokines and their related neuroactive substances may affect hypothalamic TS and GR neurones thereby producing elaborately regulated changes in homeostatic functions such as thermoregulation (fever) and feeding (anorexia), which are considered as host defence responses.  相似文献   

12.
The intravenous injection of LPS rapidly evokes fever. We have hypothesized that its onset is mediated by prostaglandin (PG)E(2) quickly released by Kupffer cells (Kc). LPS, however, does not stimulate PGE(2) production by Kc as rapidly as it induces fever; but complement (C) activated by LPS could be the exciting agent. To test this hypothesis, we injected LPS (2 or 8 microg/kg) or cobra venom factor (CVF, an immediate activator of the C cascade that depletes its substrate, ultimately causing hypocomplementemia; 25 U/animal) into the portal vein of anesthetized guinea pigs and measured the appearance of PGE(2), TNF-alpha, IL-1beta, and IL-6 in the inferior vena cava (IVC) over the following 60 min. LPS (at both doses) and CVF induced similar rises in PGE(2) within the first 5 min after treatment; the rises in PGE(2) due to CVF returned to control in 15 min, whereas PGE(2) rises due to LPS increased further, then stabilized. LPS given 3 h after CVF to the same animals also elevated PGE(2), but after a 30- to 45-min delay. CVF per se did not alter basal PGE(2) and cytokine levels and their responses to LPS. These in vivo effects were substantiated by the in vitro responses of primary Kc from guinea pigs to C (0.116 U/ml) and LPS (200 ng/ml). These results indicate that LPS-activated C rather than LPS itself triggers the early release of PGE(2) by Kc.  相似文献   

13.
Antiabortifacient action of dibenzyloxyindanpropionic acid in mice   总被引:1,自引:0,他引:1  
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF1 alpha) were determined. PGE2 and 6 keto PGF1 alpha were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196 +/- 40 to 370 +/- 84 ng/4 hrs/g creatinine and 6 keto PGF1 alpha (184 +/- 30 to 326 +/- 36), both p less than 0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF1 alpha excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF1 alpha varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF1 alpha release (370 +/- 84 vs. 381 +/- 80) PGE2 and (326 +/- 50 vs. 315 +/- 40) 6 keto PGF1 alpha both p greater than 0.2). PHT alone stimulated only 6 keto PGF1 alpha. PHB and the specific alpha 1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with alpha 1 characteristics.  相似文献   

14.
To examine the relationship between glutamate receptors and the action of NC-1900 on a step-through passive avoidance (PA) task in mice, MK-801, an NMDA receptor blocker, and (S)-4-carboxyphenylglycine (4CPG), a group I metabotropic receptor antagonist, were administered intraventricularly (i.c.v.) singly or as co-injections. The i.c.v. injection of MK-801 (0.8 microg) or 4CPG (2 microg) decreased the latency on the PA task. NC-1900 (1 ng/kg, subcutaneously (s.c.)) alone prolonged the latency on the retention trial in the PA task. MK-801 (0.2 and 0.8 microg) or 4CPG (0.5 and 2 microg) significantly inhibited the action of NC-1900, while the s.c. injection of NC-1900 did not affect latency in mice that received i.c.v. co-injection of MK-801 and 4CPG at any of the doses tested. These results suggest that glutamate receptors participate in the action of NC-1900 on learning and memory in PA task performance.  相似文献   

15.
Hypothermia is one of the prominent features of the acute phase response to endotoxin (LPS). This study was undertaken to elucidate the effects of the COX-inhibitor Indomethacin (INDO) and the selective FLAP inhibitor MK-886 on LPS-induced hypothermia, mortality and increase in production of hypothalamic prostaglandin E(2) (PGE(2)) and leukotriene during endotoxemia.It has been demonstrated that INDO and MK-886 significantly attenuate the hypothermia induced by LPS, but MK-886 has a lesser (protective) effect than INDO. Only INDO was found to attenuate significantly the hyperthermic response to LPS. Furthermore, INDO significantly reduced the elevation in hypothalamic PGE(2) levels. MK-886 significantly reduced the elevation in hypothalamic leukotriene production only when LPS was given in a dose of 1mg/kg. Both drugs failed to reduce the elevation in plasma TNF-alpha and mortality induced by LPS.We conclude that in rats, febrile response to endotoxin involves many inflammatory mediators. However, it seems that PGE(2) and leukotrienes do not have a pivotal role in the mechanism of LPS-induced mortality.  相似文献   

16.
Recently, the carbon monoxide (CO)-heme oxygenase pathway has been shown to play an important role in fever generation by acting on the central nervous system, but the mechanisms involved have not been assessed. Thus the present study was designed to determine whether prostagandins participate in the rise in body temperature (T(b)) observed after induction of the CO-heme oxygenase pathway in the central nervous system. Intracerebroventricular (ICV) injection of heme-lysinate (152 nmol/4 microl), which is known to induce the CO-heme oxygenase pathway, caused an increase in T(b) [thermal index (TI) = 5.3 +/- 0.5 degrees C. h], which was attenuated by ICV administration of the heme oxygenase inhibitor ZnDPBG (200 nmol/4 microl; TI = 2.5 +/- 1.7 degrees C. h; P < 0.05). No change in T(b) was observed after intraperitoneal injection of the cyclooxygenase inhibitor indomethacin (5 mg/kg), whereas indomethacin at the same dose attenuated the fever induced by ICV administration of lipopolysaccharide (LPS) (10 ng/2 microl) (vehicle/LPS: TI = 4.5 +/- 0.5 degrees C. h; indomethacin/LPS: TI = 1.7 +/- 1.0 degrees C. h; P < 0.05). Interestingly, indomethacin did not affect the rise in T(b) induced by heme-lysinate (152 nmol/4 microl) ICV injection (vehicle/heme: TI = 4.5 +/- 1.4 degrees C. h; indomethacin/heme: TI = 4.2 +/- 1.0 degrees C. h). Finally, PGE(2) (200 ng/2 microl) injected ICV evoked a rise in T(b) that lasted 1.5 h. The heme oxygenase inhibitor ZnDPBG (200 nmol/4 microl) failed to alter PGE(2)-induced fever. Taken together, these results indicate that the central CO-heme oxygenase pathway increases T(b) independently of prostaglandins.  相似文献   

17.
A reduction of heat loss to the environment through increased cutaneous vasoconstrictor (CVC) sympathetic outflow contributes to elevated body temperature during fever. We determined the role of neurons in the dorsomedial hypothalamus (DMH) in increases in CVC sympathetic tone evoked by PGE2 into the preoptic area (POA) in chloralose/urethane-anesthetized rats. The frequency of axonal action potentials of CVC sympathetic ganglion cells recorded from the surface of the tail artery was increased by 1.8 Hz following nanoinjections of bicuculline (50 pmol) into the DMH. PGE2 nanoinjection into the POA elicited a similar excitation of tail CVC neurons (+2.1 Hz). Subsequent to PGE2 into the POA, muscimol (400 pmol/side) into the DMH did not alter the activity of tail CVC neurons. Inhibition of neurons in the rostral raphé pallidus (rRPa) eliminated the spontaneous discharge of tail CVC neurons but only reduced the PGE2-evoked activity. Residual activity was abolished by subsequent muscimol into the rostral ventrolateral medulla. Transections through the neuraxis caudal to the POA increased the activity of tail CVC neurons, which were sustained through transections caudal to DMH. We conclude that while activation of neurons in the DMH is sufficient to activate tail CVC neurons, it is not necessary for their PGE2-evoked activity. These results support a CVC component of increased core temperature elicited by PGE2 in POA that arises from relief of a tonic inhibition from neurons in POA of CVC sympathetic premotor neurons in rRPa and is dependent on the excitation of CVC premotor neurons from a site caudal to DMH.  相似文献   

18.
The effects of norepinephrine (NE: 3 x 10(-6) M) on the outputs of prostaglandins (PGs) E1, E2 and F2 alpha, from uterine horns isolated from ovariectomized rats and suspended in solutions with or without exogenous glucose, were explored. The releases of the different PGs into the external medium were determined after incubating for one hour uterine preparations, mounted within a tissue bath and receiving a constant preload tension. In glucose-containing solutions, NE enhanced the basal output of PGE2 and failed to alter the basal releases of PGE1 or of PGF2 alpha. In glucose-free media, the basal output of PGE2 was comparable to that detected in presence of exogenous glucose, and its augmentation following added NE was again evident. However, the basal outputs of PGE1 and of PGF2 alpha, greater in glucose-free solutions than in glucose-containing media, were significantly diminished by added NE. Uterine triglyceride (TG) levels were also explored, both immediately after sacrifice (0 min) or following suspending uterine segments during one hour (60 min) in solutions containing exogenous glucose or not. In glucose-containing media, tissue TGs did not differ at 0 min or at 60 min, neither in controls, nor in NE-challenged preparations, whereas in glucose-free solutions, TGs were significantly smaller at 60 min than at 0. interestingly, the addition of NE completely prevented the dimunition of uterine TGs, present at 60 min in glucose-free medium. Neither propranolol nor yohimbine (10(-6) M) altered this sparing action of added NE on tissue TGs, but phentolamine or prazocin (10(-6) M), effectively antagonized the preventive effect of the agonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The febrile responses of splenectomized (Splex) or sham-operated (Sham) guinea pigs challenged intravenously or intraperitoneally with lipopolysaccharide (LPS) 7 and 30 days after surgery were evaluated. FITC-LPS uptake by Kupffer cells (KC) was additionally assessed 15, 30, and 60 min after injection. LPS at 0.05 microg/kg iv did not evoke fever in Sham animals but caused a 1.2 degrees C core temperature (T(c)) rise in the Splex animals. LPS at 2 microg/kg iv induced a 1.8 degrees C greater T(c) rise of the Splex animals than of their controls. LPS at 2 and 8 microg/kg ip 7 days postsurgery induced 1.4 and 1.8 degrees C higher fevers, respectively, in the Splex than Sham animals. LPS at 2 and 8 microg/kg ip 30 days postsurgery also increased the febrile responses of the asplenic animals by 1.6 and 1.8 degrees C, respectively. FITC-LPS at 7 days was detected in the controls within KC 15 min after its administration; the label density was reduced at 30 min and almost 0 at 60 min. In the Splex group, in contrast, the labeling was significantly denser and remained unchanged through all three time points; this effect was still present 30 days after surgery. Similar results were obtained at 60 min after FITC-LPS intraperitoneal injection. Gadolinium chloride pretreatment (-3 days) of the Splex group significantly reduced both their febrile responses to LPS (8 microg/kg ip) and their KC uptake of FITC-LPS 7 days postsurgery. Thus splenectomy increases the magnitude of the febrile response of guinea pigs and the uptake of systemically administered LPS.  相似文献   

20.
The receptors mediating prostanoid-induced contraction of guinea-pig isolated trachea have been characterised in terms of a recently proposed general classification of prostanoid receptors. Results obtained on the trachea were compared with those obtained on guinea-pig fundus, which contains a sub-type of PGE2-sensitive (EP-) receptor termed the EP1-receptor, and guinea-pig lung strip, which contains a thromboxane-sensitive or TP-receptor. The following agonists were studied, PGE2, PGF2 alpha and the thromboxane-like agonists U-46619 and Wy17186. The antagonists studied were SC-19220 which selectively blocks EP1-receptors, and AH19437 which selectively blocks TP-receptors. On guinea-pig fundus the rank order of agonist potency was PGE2 greater than PGF2 alpha greater than Wy-17186 approximately equal to U-46619, and responses to all agonists were antagonised by SC-19220 but not by AH19437. On guinea-pig lung strip the rank order of potency was U-46619 greater than Wy17186 much greater than PGF2 alpha greater than PGE2 and responses to all agonists tested were blocked by AH19437 but not by SC-19220. On the trachea, the rank order was PGE2 = U-46619 greater than Wy17186 = PGF2 alpha. SC-19220 antagonised responses to PGE2 and PGF2 alpha, but not those to U-46619 or Wy17186. Conversely, AH19437 antagonised responses to U-46619 and Wy17186 but not those to PGE2 or PGF2 alpha. It is concluded that prostanoid-induced contractions of guinea-pig trachea can be mediated by both EP1- and TP-receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号