首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Endopeptidase-24.11, an integral microvillar membrane enzyme, exists in differently glycosylated forms when purified from pig kidney and intestine [Fulcher, Chaplin & Kenny (1983) Biochem. J. 215, 317-323]. When these glycoproteins, and another form of the kidney enzyme prepared from the Yucatan dwarf strain of piglet, were treated, under controlled conditions, with trifluoromethanesulphonic acid, the proteins were freed of carbohydrate and all had the same apparent subunit Mr (77 000) even though the untreated forms varied from Mr 89 000 to Mr 95 000.  相似文献   

2.
The purification of detergent-solubilized kidney microvillar endopeptidase (EC 3.4.24.11) by immuno-adsorbent chromatography is described. The product (the d-form) was 270-fold purified compared with the homogenate of kidney cortex and was obtained in a yield of 5%. It was free of other peptidase activities and homogeneous by electrophoretic analyses. It contained about 15% carbohydrate and one Zn atom/subunit. Two trypsin-treated forms were also characterized. One (dt-form) was obtained by treatment of the d-form. The other (tt-form) was the result of solubilizing the membrane by treatment with toluene and trypsin. All three forms had apparent subunit Mr values of approx. 89 000, but the d-form appeared to be slightly larger than the other two. Estimates of Mr by gel filtration showed that of the tt-form to be 216 000 whereas those of the other forms were 320 000. An estimate of the detergent (Triton X-100) bound to the d- and dt-forms accounted for this difference. By several criteria, including charge-shift crossed immunoelectrophoresis and hydrophobic chromatography, the d- and dt-forms were shown to be amphipathic molecules. In contrast, the tt-form was hydrophilic in its properties. Differences in ionic properties were also noted, consistent with the loss, in the case of the dt-form, of a positively charged peptide. The results indicate that the native endopeptidase is a dimeric molecule, each subunit being anchored in the membrane by a relatively small region of the polypeptide close to one or other terminus. The d- and dt-forms had similar enzyme activity when assayed by the hydrolysis of 125I-insulin B-chain. Chelating agents and phosphoramidon inhibited the endopeptidase. The kinetic constants were determined by a new two-stage fluorimetric assay using glutarylglycylglycylphenylalanine 2-naphthylamide as substrate and aminopeptidase N (EC 3.4.11.2) to hydrolyse phenylalanine 2-naphthylamide. The Km was 68 microM and Vmax. 484nmol X min-1 X (mg of protein)-1.  相似文献   

3.
1. The respiratory nitrate reductase of Klebsiella aerogenes was solubilized from the bacterial membranes by deoxycholate and purified further by means of gel chromatography in the presence of deoxycholate, and anion-exchange chromatography. 2. Dependent on the isolation procedure two different homogeneous forms of the enzyme, having different subunit compositions, can be obtained. These forms are designated nitrate reductase I and nitrate reductase II. Both enzyme preparations are isolated as tetramers having sedimentation constants (s20,w) of 22.1 S and 21.7 S for nitrate reductase I and II, respectively. The nitrate reductase I tetramer has a molecular weight of about 106. 3. In the presence of deoxycholate both enzyme preparations dissociate reversibly into their respective monomeric forms. The monomeric form of nitrate reductase I has a molecular weight of about 260 000 and a sedimentation constant of 9.8 S. For nitrate reductase II these values are 180 000 and 8.5 S, respectively. 4. Nitrate reductase I consists of three different subunits, having molecular weights of 117 000; 57 000 and 52 000, which are present in a 1:1:2 molar ratio, respectively. Nitrate reductase II contains only the subunits with a molecular weight of 117 000 and 57 000 in a equimolar ratio. 5. Treatment at pH 9.5 in the presence of deoxycholate and 0.05 M NaCl or ageing removes the 52 000 Mr subunit from nitrate reductase I. This smallest subunit, in contrast to the other subunits, is a basic protein. 6. The 52 000 Mr subunit has no catalytic function in the intramolecular electron transfer from reduced benzylviologen to nitrate. However, it appears to have a structural function since nitrate reductase II, which lacks this subunit, is much more labile than nitrate reductase I. Inactivation of nitrate reductase II can be prevented by the presence of deoxycholate. 7. The spectrum of the enzyme resembles that of iron-sulfur proteins. No cytochromes or contaminating enzyme activities are present in the purified enzyme. Only reduced benzylviologen was found to be capable of acting as an electron donor. 8. p-Chlormercuribenzoate enhances the enzymatic activity at concentrations of 0.1 mM and lower. At higher p-chlormercuribenzoate concentrations the enzymatic activity is inhibited non-competitively with either nitrate or benzylviologen as a substrate. The inhibition is not counteracted by cysteine.  相似文献   

4.
Two extracellular proteinases that probably play a central role in the metabolism and pathogenesis of the most common dermatophyte of man, Trichophyton rubrum, were purified to homogeneity. Size-exclusion chromatography and Chromatofocusing were used to purify the major proteinases 42-fold from crude fungal culture filtrate. The major enzyme has pI 7.8 and subunit Mr 44 000, but forms a dimer of Mr approx. 90 000 in the absence of reducing agents. A second enzyme with pI 6.5 and subunit Mr 36 000, was also purified. It is very similar in substrate specificity to the major enzyme but has lower specific activity, and may be an autoproteolysis product. The major proteinase has pH optimum 8, a Ca2+-dependence maximum of 1 mM, and was inhibited by serine-proteinase inhibitors, especially tetrapeptidyl chloromethane derivatives with hydrophobic residues at the P-1 site. Kinetic studies also showed that tetrapeptides containing aromatic or hydrophobic residues at P-1 were the best substrates. A kcat./Km of 27 000 M-1 X S-1 was calculated for the peptide 3-carboxypropionyl-Ala-Ala-Pro-Phe-p-nitroanilide. The enzyme has significant activity against keratin, elastin and denatured type I collagen (Azocoll).  相似文献   

5.
The activity of myocardial adenosine kinase (E.N. 2.7.1.20) in a number of species was assayed. Rat heart contained the highest specific activity. From this source adenosine kinase was purified in a simple way 80-fold, until it was free of adenosine deaminase activity. A molecular weight of about 39 000 was measured. NSC 113939 (1), NSC 113940 and 8-azaadenosine inhibited myocardial adenosine kinase. Dipyridamole stimulated the enzyme at high adenosine levels, and inhibited at low substrate concentrations. A number of divalent cations could (partially) substitute for Mg2+. The optimal concentration of MgCl2 or MnCl2 was about 0.5 mM; concentrations exceeding 1 mM inhibited severely. An apparent Km for ATP of 0.1 mM was measured, whereas an apparent Km for adenosine of 0.5 muM was was found. The latter increased to 3.3 muM, when dipyridamole was added. Replacement of ATP by GTB or ITP increased the activity, and UTP and CTP were inferior as a phosphate donor.  相似文献   

6.
A second endopeptidase is present in the renal microvillar membrane of rats that can be distinguished from endopeptidase-24.11 by its insensitivity to inhibition by phosphoramidon. The purification of this enzyme, referred to as endopeptidase-2, is described. The enzyme was efficiently released from the membrane by treatment with papain. The subsequent four steps depended on ion-exchange and gel-filtration chromatography. These steps were monitored by the hydrolysis of various substrates: 125I-insulin B chain (the normal assay substrate), benzoyl-L-tyrosyl-p-aminobenzoate (Bz-Tyr-pAB), azocasein and benzyloxycarbonyl-L-phenylalanyl-L-arginine 7-amino-4-methylcoumarylamide (Z-Phe-Arg-NMec). All four assays revealed comparable stepwise increases in activity in the main stages of the purification, although it was apparent that the last-named fluorogenic assay depended on traces of aminopeptidase activity present in the preparation. The Km for 125I-insulin B chain was 16 microM and that for Bz-Tyr-pAB was 4.7 mM. Several experimental approaches confirmed that both peptides were hydrolysed by the same enzyme. The pH optimum was 7.3. Phosphate buffers were inhibitory and shifted the optimum to above pH 9. Zinc was detected in the purified enzyme; EDTA and 1,10-phenanthroline were strongly inhibitory. SDS/polyacrylamide-gel electrophoresis revealed polypeptides of equal staining intensity of Mr 80,000 and 74,000 in reducing conditions. In non-reducing conditions a single band of apparent Mr 220,000 was seen. Gel filtration yielded an Mr of 436,000. These results are consistent with an oligomeric structure in which the alpha and beta chains are linked by disulphide bridges. Endopeptidase-2 hydrolysed a number of neuropeptides. Enkephalins resisted attack, only the heptapeptide [Met]enkephalin-Arg6-Phe7 being susceptible to slow hydrolysis. Luliberin (luteinizing-hormone-releasing hormone) and bradykinin were rapidly hydrolysed. Neurotensin was shown to be slowly attacked at the Tyr3-Glu4 bond. Thus the specificity appears to be limited to the hydrolysis of bonds involving the carboxy group of aromatic residues, provided that this P1 residue is extended by additional residues, at least to the P3' position. The relationship of this membrane metalloendopeptidase to mouse meprin and human 'PABA peptidase' is discussed.  相似文献   

7.
The biogenesis of two microvillar enzymes, aminopeptidase N (EC 3.4.11.2) and sucrase (EC 3.2.1.48)-isomaltase (EC 3.2.1.10), was studied by pulse-chase labelling of pig small-intestinal explants kept in organ culture. Both enzymes became inserted into the membrane during or immediately after polypeptide synthesis, indicating that translation takes place on ribosomes attached to the rough endoplasmic reticulum. The earliest detectable forms of aminopeptidase and sucrase-isomaltase were polypeptides of Mr 140 000 and 240 000 respectively. These polypeptides were susceptible to treatment with endo-beta-N-acetylglucosaminidiase H (EC 3.2.1.96), suggesting that the microvillar enzymes during or immediately after completion of protein synthesis become glycosylated with a 'high-mannose' oligosaccharide structure similarly to other plasma-membrane and secretory proteins. After 20--40 min or 60--90 min of chase, respectively, aminopeptidase N and sucrase-isomaltase were reglycosylated to give the polypeptides of Mr 166 000 (aminopeptidase N) and 265 000 (sucrase-isomaltase). These were expressed at the microvillar membrane after 60--90 min. During the entire process of synthesis and transport to the microvillar membrane the enzymes were bound to membranes, indicating that the biogenesis of aminopeptidase N and sucrase-isomaltase occurs in accordance with the membrane flow hypothesis.  相似文献   

8.
The subcellular forms of cytidylyltransferase (EC 2.7.7.15) in rat lung, rat liver, Hep G2 cells, A549 cells and alveolar Type II cells from adult rats were separated by glycerol density centrifugation. Cytosol prepared from lung, Hep G2 cells, A549 cells and alveolar Type II cells contained two forms of the enzyme. These species were identical to the L-Form and H-Form isolated previously from lung cytosol by gel filtration. Liver cytosol contained only the L-Form. Rapid treatment of Hep G2 cells with digitonin released all of the cytoplasmic cytidylyltransferase activity. The released activity was present in both H-Form and L-Form. The molecular weight of L-Form was determined from sedimentation coefficients and Stokes radius values to be 97,690 +/- 10,175. Thus, the L-Form appears to be a dimer of the Mr 45,000 catalytic subunit. The f/f degrees value of 1.5 indicated that the protein molecule has an axial ratio of 10, assuming a prolate ellipsoid shape. The estimated molecular weight of the H-Form was 284,000 +/- 25,000. The H-Form was dissociated into L-Form by incubation of cytosol at 37 degrees C. Triton X-100 (0.1%) and chlorpromazine (1.0 mM) also dissociated the H-Form into L-Form. Western blot analysis indicated that both forms contained the catalytic subunit. An increase in Mr 45,000 subunit coincided with the increase in cytidylyltransferase activity in L-Form, which resulted from the dissociated of H-Form. The L-Form was dependent on phospholipid for activity. The H-Form was active without lipid. Phosphatidylinositol was present in the H-Form isolated from Hep G2 cells. The phosphatidylinositol dispersed when the H-Form was dissociated into L-Form. Phosphatidylinositol and phosphatidylglycerol cause L-Form to aggregate into a form similar to H-Form. Phosphatidylcholine/oleic acid (1:1 molar ratio) and oleic acid also aggregated the L-Form. Phosphatidylcholine did not produce aggregation. We conclude that the H-Form is the active form of cytidylyltransferase in cytoplasm. The H-Form appears to be a lipoprotein consisting of an apoprotein (L-Form dimer of the Mr 45,000 subunit) complexed with lipids. A change in the relative distribution of H-Form and L-Form in cytosol would alter the cellular activity and thus may be important in the regulation of phosphatidylcholine synthesis.  相似文献   

9.
Aminopeptidase W is a newly discovered enzyme of the renal and intestinal brush borders, having been first isolated as a 130 kDa glycoprotein recognized by a monoclonal antibody [Gee & Kenny (1985) Biochem. J. 230, 753-764]. It is particularly effective in the hydrolysis of dipeptides, Glu-Trp (Km 0.57 mM; kcat. 6770 min-1) being a favoured substrate. Dipeptides with tryptophan, phenylalanine or tyrosine in the P1 position were rapidly hydrolysed, but the requirements in respect of the P1 residue were not stringent. The activity of aminopeptidase W is markedly influenced by ionic conditions. The highest activity was observed in 100 mM-Tris/HCl, pH 8; phosphate ions were strongly inhibitory. Activity was also greatly affected by bivalent metal ions, and the magnitude and direction of the effects depended on the nature of the buffer anions and on pH. The most effective inhibitors were amastatin and bestatin. Some thiols also inhibited, but other chelating agents, EDTA and 1,10-phenanthroline, had no effect over the concentration range 1-10 mM. Other group-specific inhibitors, for cysteine, serine or aspartic peptidases, were also ineffective. Some molecular properties were studied. Deglycosylation by treatment with N-glycanase diminished the apparent subunit Mr from 130,000 to 90,000. The enzyme contained zinc, 1.2 atoms/subunit, and in spite of the atypical properties of this enzyme in respect of chelating agents, a zinc-catalysed mechanism is the most probable. Its roles in digestion and in renal function are not yet clear.  相似文献   

10.
A procedure for the purification of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli is described. Homogeneous enzyme of specific activity 17.7 units/mg was obtained in 22% yield. The key purification step involves substrate elution of the enzyme from a cellulose phosphate column. The subunit Mr was estimated to be 49 000 by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The native Mr was estimated to be 55 000 by gel filtration, indicating that the enzyme is monomeric.  相似文献   

11.
1. The NAD analogue, N6-[N-(6-aminohexyl)carbamoylmethyl]-NAD, was covalently bound to horse liver alcohol dehydrogenase in a carbodiimide-mediated reaction and in such a way that it was active with the very same enzyme molecule to which it was coupled. 2. The degree of substitution, i.e. the number of NAD analogues per enzyme subunit, could be varied (0.3-1.6). In one preparation 1.6 coenzyme molecules were bound per subunit; the alcohol dehydrogenase activity of this preparation was 40% of the activity obtained after addition of free NAD in excess. 3. It was calculated that every fourth active site of this preparation was provided with a covalently bound functioning coenzyme analogue, and that this analogue had a cycling rate of about 40 000 cycles/h in a coupled substrate assay. 4. The presence of the covalently bound coenzyme made the active sites difficult to inhibit with a competitive inhibitor. For example, 10 mM AMP inhibited the activity of the preparation by 50% whereas a reference system containing native alcohol dehydrogenase was inhibited by 80% in spite of the fact that the reference system contained about 20 000 times as high a concentration of coenzyme.  相似文献   

12.
The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria.  相似文献   

13.
The FAD-containing short-chain acyl-CoA dehydrogenase was purified from ox liver mitochondria by using (NH4)2SO4 fractionation, DEAE-Sephadex A-50 and chromatofocusing on PBE 94 resin. The enzyme is a tetramer, with a native Mr of approx. 162 000 and a subunit Mr of 41 000. Short-chain acyl-CoA dehydrogenases are usually isolated in a green form. The chromatofocusing step in the purification presented here partially resolved the enzyme into a green form and a yellow form. In the dye-mediated assay system, the enzyme exhibited optimal activity towards 50 microM-butyryl-CoA at pH 7.1. Kinetic parameters were also determined for a number of other straight-chain acyl-CoA substrates. The u.v.- and visible-absorption characteristics of the native forms of the enzyme are described, together with complexes formed by addition of butyryl-CoA, acetoacetyl-CoA and CoA persulphide.  相似文献   

14.
Dipeptidyl peptidase IV, a kidney brush-border serine peptidase.   总被引:11,自引:11,他引:0  
Dipeptidyl peptidase IV, an enzyme that releases dipeptides from substrates with N-terminal sequences of the forms X-Pro-Y or X-Ala-Y, was purified 300-fold from pig kidney cortex. The kidney is the main source of the enzyme, where it is one of the major microvillus-membrane proteins. Several other tissues contained demonstrable activity against the usual assay substrate glycylproline 2-naphthylamide. In the small intestine this activity was greatly enriched in the microvillus fraction. In all tissues examined, the activity was extremely sensitive to inhibition by di-isopropyl phosphorofluoridate (Dip-F), but relatively resistant to inhibition by phenylmethylsulphonyl fluoride. It is a serine proteinase which may be covalently labelled with [32P]Dip-F, and is the only enzyme of this class in the microvillus membrane. The apparent subunit mol.wt. estimated by sodium dodecyl-sulphate/polyacrylamide-gel electrophoresis and by titration with [32P]Dip-F was 130 000. Gel-filtration and sedimentation-equilibrium methods gave values in the region of 280 000, which is consistent with a dimeric structure, a conclusion supported by electron micrographs of the purified enzyme. Among other well-characterized serine proteinases, this enzyme is unique in its membrane location and its large subunit size. Investigation of the mode of attack of the peptidase on oligopeptides revealed that it could hydrolyse certain N-blocked peptides, e.g. Z-Gly-Pro-Leu-Gly-Pro. In this respect it is acting as an endopeptidase and as such may merit reclassification and renaming as microvillus-membrane serine peptidase.  相似文献   

15.
Optimal assay conditions for analyses of the catalytic subunit activity of the cyclic AMP-dependent protein kinase using a well-defined, commercially available synthetic peptide as the phosphate acceptor are defined. Activity of purified catalytic subunit toward the synthetic peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (PK-1; Kemptide) was 1.5- to 45-fold greater than activity toward other commonly used substrates such as histone fractions, casein, and protamine. The effects of buffer, pH, Mg2+, and protein kinase concentration on activity toward PK-1 were investigated. The optimal assay conditions determined were as follows: 20 mM Hepes or phosphate buffer, pH 7.5, 100 microM PK-1, 100 microM [gamma-32P]ATP, 3 mM MgCl2, 12 mM KCl, and 20-200 ng of catalytic subunit assayed at 30 degrees C. Since PK-1 is the only commercially available, well-defined substrate for this enzyme, adaption of the proposed standard assay conditions for the analyses of purified catalytic subunit activity will permit direct comparison of kinetic parameters and purity of enzyme preparations from multiple preparations.  相似文献   

16.
Beef kidney 3-hydroxyanthranilic acid oxygenase has been purified to homogeneity. It is a single subunit protein of Mr = 34,000 +/- 2,000 with a frictional coefficient (f/f0) of about 1.1. The enzyme readily aggregates to form, apparently inactive, higher molecular weight oligomers. The very rapid loss of enzyme activity during the assay was analyzed extensively. It was found to be due to inactivation of the enzyme by the substrate, 3-hydroxyanthranilate, and unrelated to enzyme turnover or oxidation of bound iron. The loss of activity was shown to be a first order decay process, and methods are given for obtaining accurate initial reaction rates under all conditions. Evidence was presented that the enzyme assumes a catalytically inactive conformation at pH 3.4, which only relatively slowly rearranges to an active form at pH 6.5; the rearrangement can be blocked by the presence of substrate. We have found that Fe2+, which is required for enzymatic activity, can equilibrate freely, albeit slowly, with the enzyme during the course of the enzyme reaction even in the presence of saturating 3-hydroxanthranilate. Under assay conditons, the Fe2+ has an apparent dissociation constant of 0.04 mM. The kinetic properties of the enzyme were found to be dramatically different in beta,beta-dimethylglutarate buffer and collidine buffer; both the rate of loss of activity during the assay and the substrate Km and Vmax were affected.  相似文献   

17.
Glycerophosphoinositol (GroPIns) is a major inositol phosphate in many cell types. In this study we have determined the optimal conditions (pH 8.0 and 0.5 mM MnCl2) for the metabolism of this molecule in an extract from human placenta, and we show that the major product is inositol (1)-phosphate (Ins(1)P). The enzyme activity that catalyzes this reaction is contained in the same protein designated previously as inositol-(1,2)-cyclic-phosphate 2-inositolphosphohydrolase (cyclic hydrolase), a phosphodiesterase that catalyzes the conversion of inositol-(1,2)-cyclic phosphate (cIns(1,2)P) to Ins(1)P. In addition, the enzyme also catalyzes the production of Ins(1)P from inositol (1)-methylphosphate. All of these substrates, (cIns(1,2)P, GroPIns, and inositol (1)-methylphosphate), contain a phosphodiester bond at the 1-position of the inositol ring. Additional phosphate groups on the 4- or 5-positions of the inositol ring prevent hydrolysis by cyclic hydrolase. The Km of the enzyme for GroPIns is 0.67 mM, and the Vm is 5 mumol/min/mg of protein. GroPIns competitively inhibits cIns(1,2)P hydrolysis with a Ki equal to its Km as a substrate. Hydrolysis of GroPIns and cIns(1,2)P is stimulated by MnCl2, phosphatidylserine, and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA). However, whereas cIns(1,2)P hydrolysis is increased 5-8-fold by phosphatidylserine and EGTA only a 2-fold increase of GroPIns hydrolysis occurs under the same conditions. Hydrolysis of both GroPIns and cIns(1,2)P is inhibited by Ins(2)P; the ID50 values are 12 and 1 microM, respectively. There are significant quantities of GroPIns and Ins(2)P in 3T3 cells, indicating that these compounds that alter cIns(1,2)P hydrolase activity may modulate intracellular levels of cIns(1,2)P. Finally, we present evidence suggesting that the substrate specificity of this enzyme is altered during cell transformation.  相似文献   

18.
Purification and characterization of activated human erythrocyte prolidase   总被引:1,自引:0,他引:1  
Prolidase (E.C. 3.4.13.9) has been purified 7500-fold to homogeneity from human erythrocytes in a Mn2+-activated form using conventional and fast protein liquid chromatography columns. The procedure includes a 1-h incubation of the crude hemolysate at 50 degrees C with 1 mM MnCl2. Following this novel step, prolidase retains full activity, obviating the requirement for preincubation of each enzyme fraction with Mn2+ prior to assay. Preincubation with MnCl2 does not change the isoelectric point of the enzyme. The molecular weight of the purified enzyme was 58,000 when measured by SDS-PAGE. Western blotting, using rabbit antibody raised to human kidney prolidase, with partially purified erythrocyte enzyme revealed a cross-reacting band at Mr 58,000.  相似文献   

19.
The integration of a DNA copy of the viral genome into the genome of the host cell is an essential step in the replication of all retroviruses. Integration requires two discrete biochemical reactions; specific processing of each viral long terminal repeat terminus or donor substrate, and a DNA strand transfer step wherein the processed donor substrate is joined to a nonspecific target DNA. Both reactions are catalyzed by a virally encoded enzyme, integrase. A microtiter assay for the strand transfer activity of human immunodeficiency virus type 1 integrase which uses an immobilized oligonucleotide as the donor substrate was previously published (D. J. Hazuda, J. C. Hastings, A. L. Wolfe, and E. A. Emini, Nucleic Acids Res. 22;1121-1122, 1994). We now describe a series of modifications to the method which facilitate study of both the nature and the dynamics of the interaction between integrase and the donor DNA. The enzyme which binds to the immobilized donor is shown to be sufficient to catalyze strand transfer with target DNA substrates added subsequent to assembly; in the absence of the target substrate, the complex was retained on the donor in an enzymatically competent state. Assembly required high concentrations of divalent cation, with optimal activity achieved at 25 mM MnCl2. In contrast, preassembled complexes catalyzed strand transfer equally efficiently in either 1 or 25 mM MnCl2, indicating mechanistically distinct functions for the divalent cation in assembly and catalysis, respectively. Prior incubation of the enzyme in 25 mM MnCl2 was shown to promote the multimerization of integrase in the absence of a DNA substrate and alleviate the requirement for high concentrations of divalent cation during assembly. The superphysiological requirement for MnCl2 may, therefore, reflect an insufficiency for functional self-assembly in vitro. Subunits were observed to exchange during the assembly reaction, suggesting that multimerization can occur either before or coincident with but not after donor binding. These studies both validate and illustrate the utility of this novel methodology and suggest that the approach may be generally useful in characterizing other details of this biochemical reaction.  相似文献   

20.
The D1 gene encoding the large subunit of vaccinia virus mRNA capping enzyme was expressed in Escherichia coli BL21(DE3) under the control of a bacteriophage T7 promoter. Guanylyltransferase activity (assayed as the formation of a covalent enzyme-guanylate complex) was detected in soluble lysates of these bacteria. Two major species of protein-GMP complex were formed, one of Mr 95,000 (corresponding in size to the D1 gene product) and one of Mr 60,000. Partial purification of the guanylyltransferase was effected by ammonium sulfate precipitation and ion-exchange chromatography. The expressed large subunit synthesized GpppA caps when provided with 5'-triphosphate-terminated poly(A) as a cap acceptor, but was unable to catalyze cap methylation in the presence of S-adenosylmethionine. Thus, the small capping enzyme subunit was shown to be dispensable for guanylylation, but required for cap methylation of RNA. The Mr 95,000 and Mr 60,000 protein-GMP forming activities were resolved during centrifugation in a glycerol gradient; the two forms sedimented at 5.5 S and 4.4 S, respectively, consistent with each enzyme form being a monomer. Either species catalyzed GMP transfer to an RNA acceptor. The isolated Mr 95,000 guanylyltransferase could be converted to an active Mr 60,000 form in vitro by limited proteolysis with trypsin. Expression of carboxyl-deleted forms of the D1 gene product in E. of carboxyl-deleted forms of the D1 gene product in E. coli further localized the guanylyltransferase domain to the amino two-thirds of the Mr 95,000 polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号