首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
6-Pyruvoyltetrahydropterin synthase (PTPS) participates in tetrahydrobiopterin cofactor biosynthesis. We previously identified in a PTPS-deficient patient an inactive PTPS allele with an Arg(16) to Cys codon mutation. Arg(16) is located in the protein surface exposed phosphorylation motif Arg(16)-Arg-Ile-Ser, with Ser(19) as the putative phosphorylation site for serine-threonine protein kinases. Purification of recombinant PTPS-S19A from bacterial cells resulted in an active enzyme (k(cat)/K(m) = 6.4 x 10(3) M(-1) s(-1)), which was similar to wild-type PTPS (k(cat)/K(m) = 4.1 x 10(3) M(-1) s(-1)). In assays with purified enzymes, wild-type but not PTPS-S19A was a specific substrate for the cGMP-dependent protein kinase (cGK) type I and II. Upon expression in COS-1 cells, PTPS-S19A was stable but not phosphorylated and had a reduced activity of approximately 33% in comparison to wild-type PTPS. Extracts from several human cell lines, including brain, contained a kinase that bound to and phosphorylated immobilized wild-type, but not mutant PTPS. Addition of cGMP stimulated phosphotransferase activity 2-fold. Extracts from transfected COS-1 cells overexpressing cGKII stimulated Ser(19) phosphorylation more than 100-fold, but only 4-fold from cGKI overexpressing cells. Moreover, fibroblast extracts from mice lacking cGKII exhibited significantly reduced phosphorylation of PTPS. These results suggest that Ser(19) of human PTPS may be a substrate for cGKII phosphorylation also in vivo, a modification that is essential for normal activity.  相似文献   

2.
We analyzed a male patient with Fabry's disease who had no activity of the lysosomal hydrolase alpha-galactosidase A (alpha-GalA) and female members of his family. We cloned a cDNA that encoded the mutant alpha-GalA, determined its nucleotide sequence, and found two nucleotide differences between the mutant and the wild-type cDNAs. Although one difference was silent, the other difference, a C-to-T transition at nucleotide number 118, resulted in an amino acid substitution of Pro-40 by Ser. A transient expression assay demonstrated that this missense mutation was the cause of the deficiency of alpha-GalA activity in the patient. In vitro mutagenesis experiments demonstrated that Pro-40 is critical for the appearance of alpha-GalA activity.  相似文献   

3.
4.
The human cDNA and gene for galactose-1-phosphate uridyl transferase (GALT) have been cloned and sequenced. A prevalent mutation (Q188R) is known to cause classic galactosemia (G/G). G/G galactosemia has an incidence of 1/38,886 in 1,396,766 Georgia live-born infants, but a more common variant of galactosemia, Duarte, has an unknown incidence. The proposed Duarte biochemical phenotypes of GALT are as follows: D/N, D/D, and D/G, which have approximately 75%, 50%, and 25% of normal GALT activity respectively. In addition, the D allele has isoforms of its enzyme that have more acidic pI than normal. Here we systematically determine (a) the prevalence of an A-to-G transition at base pair 2744 of exon 10 in the GALT gene, transition that produces a codon change converting asparagine to aspartic acid at position 314 (N314D), and (b) the association of this mutation with the Duarte biochemical phenotype. The 2744G nucleotide change adds an AvaII (SinI) cut site, which was identified in PCR-amplified DNA. In 111 biochemically unphenotyped controls with no history of galactosemia, 13 N314D alleles were identified (prevalence 5.9%). In a prospective study, 40 D alleles were biochemically phenotyped, and 40 N314D alleles were found. By contrast, in 36 individuals known not to have the Duarte biochemical phenotype, no N314D alleles were found. We conclude that the N314D mutation is a common allele that probably causes the Duarte GALT biochemical phenotype and occurs in a predominantly Caucasian, nongalactosemic population, with a prevalence of 5.9%.  相似文献   

5.
Adenine phosphoribosyltransferase (APRT) deficiency is a genetic disorder which causes 2,8-dihydroxy-adenine urolithiasis. The estimated incidence of heterozygosity in Caucasian and Japanese populations is 1%. Mutant alleles responsible for the disease have been classified as APRT*Q0 (type I) and APRT* (type II). In our previous study, we demonstrated in APRT*J a single common base change which accounts for 70% of the Japanese mutants. The present report describes the analysis of an APRT*Q0 mutation in Japanese subjects. Two nucleotide substitutions common to all seven affected alleles from four unrelated subjects (three homozygotes and a heterozygote) were identified: G----A at nucleotide position 1453 and C----T at 1456. The G----A altered the amino acid Trp98 to a stop codon. The C----T did not alter Ala99. These point mutations were demonstrated by sequence analysis of polymerase chain reaction (PCR)-amplified genomic DNA and cDNA. The G----A change at 1453 results in the elimination of a PflMI site in the APRT gene. PflMI digests, which were used to confirm the G----A transition, can be useful in screening for this specific mutation.  相似文献   

6.
From an RNK-16 lambda-gt11 library, we have isolated and sequenced a novel cDNA rat NK cell protease 1 (RNKP-1) that has characteristics unique to serine proteases. The cDNA clone is 1102 bp and contains a complete open reading frame with an AUG start codon and a TAA stop codon. The open reading frame translates into a protein of 248 amino acids that has one glycosylation site. The characteristic N-terminal Ile-Ile-Gly-Gly and the His, Asp, and Ser amino acid residues that form the catalytic triad of serine proteases are present. The nucleotide and amino acid sequences have 87 and 80% identity, respectively, with the murine CTL-specific serine protease CCPI. However, there are extensive differences in the substrate binding regions of these proteases. Comparison of hydropathic profiles and amino acid sequences of other proteases indicate that RNKP-1 is distinct and belongs to the subfamily of serine proteases of bone marrow origin. Northern blot analysis of poly A+ RNA from rat splenocytes cultured with Con A showed 1000 and 1400 nucleotide mRNA are detected with RNKP-1 after 1 day of Con A-stimulation. The expression of the two mRNA bands continues through day 5 of culture with the lectin and may represent RNKP-1 mRNA plus related sequences due to cross-hybridization. RNKP-1 is also expressed in RNK-16 cells, but is not expressed in freshly isolated rat splenocytes, brain, lung, or lymph node tissues. The induction of RNKP-1 expression in the Con A-cultured spleen cells is accompanied by increases in both NK and lymphokine-activated killer lymphocyte activities. These data indicate that RNKP-1 is a unique serine protease that may be preferentially expressed in NK cells.  相似文献   

7.
We report the identification of an A-to-G base change, in exon 29 of the apolipoprotein B (apo B) gene, that results in the substitution of serine for asparagine at residue 4311 of mature apo B100. In a recent publication, Huang et al. have reported a C-to-T base change in exon 26 that causes the substitution of leucine for proline at residue 2712 of apo B. We have found complete linkage disequilibrium between the alleles at both these sites and an immunochemical polymorphism of LDL designated antigen group (x/y) (Ag(x/y)) in a sample of 118 Finnish individuals. This implies that either one of these substitutions--or both of them combined--could be the molecular basis of the Ag(x/y) antigenic determinants, with the allele encoding serine4311 plus leucine2712 representing the Ag(x) epitope, and that encoding asparagine4311 plus proline2712 the Ag(y) epitope. In a sample of 90 healthy Swedish individuals the Leu2712/Ser4311 allele is associated both with reduced serum levels of LDL-cholesterol and apo B and with raised levels of HDL. However, these differences are of smaller effect than those associated with the XbaI RFLP of the apo B gene in this sample. We have also genotyped 523 individuals from European, Asian, Chinese, and Afro-Caribbean populations and have found complete association between the sites encoding residues 2712 and 4311 in all of these samples, although there are large allele frequency differences between these populations. In addition, there is strong linkage disequilibrium with allelic association between the alleles of these sites and those of the XbaI RFLP in all the populations examined. Taken together, these data suggest that, since the divergence of the major ethnic groups, there has been little or no recombination in the 3' end of the human apo B gene.  相似文献   

8.
9.
At the nonpermissive temperature, premature chromosome condensation (PCC) occurs in tsBN2 cells derived from the BHK cell line, which can be converted to the Ts+ phenotype by the human RCC1 gene. To prove that the RCC1 gene is the mutant gene in tsBN2 cells, which have RCC1 mRNA and protein of the same sizes as those of BHK cells, RCC1 cDNAs were isolated from BHK and tsBN2 cells and sequenced to search for mutations. The hamster (BHK) RCC1 cDNA encodes a protein of 421 amino acids homologous to the human RCC1 protein. In a comparison of the base sequences of BHK and BN2 RCC1 cDNAs, a single base change, cytosine to thymine (serine to phenylalanine), was found in the 256th codon of BN2 RCC1 cDNA. The same transition was verified in the RCC1 genomic DNA by the polymerase chain reaction method. BHK RCC1 cDNA, but not tsBN2 RCC1 cDNA, complemented the tsBN2 mutation, although both have the same amino acid sequence except for one amino acid at the 256th codon. This amino acid change, serine to phenylalanine, was estimated to cause a profound structural change in the RCC1 protein.  相似文献   

10.
The poliovirus RNA-dependent RNA polymerase (3Dpol) shares a region of homology with all RNA polymerases, centered around the amino acid motif YGDD, which has been postulated to be involved in the catalytic activity of the enzyme. Using oligonucleotide site-directed mutagenesis, we substituted the tyrosine at this motif of the poliovirus RNA-dependent RNA polymerase with cysteine, histidine, isoleucine, methionine, phenylalanine, or serine. The enzymes were expressed in Escherichia coli, and in vitro enzyme activity was tested. The phenylalanine and methionine substitutions resulted in enzymes with activity equal to that of the wild-type enzyme. The cysteine substitution resulted in an enzyme with approximately 50% of the wild-type activity, while the serine substitution resulted in an enzyme with approximately 10% of the wild-type activity; the isoleucine and histidine substitutions resulted in background levels of enzyme activity. To assess the effects of the mutants in viral replication, the mutant polymerase genes were subcloned into the infectious cDNA clone of poliovirus. Transfection of poliovirus cDNA containing the phenylalanine mutation in 3Dpol gave rise to virus in all of the transfection trials, while cDNA containing the methionine mutation resulted in virus in only 3 of 40 transfections. Transfection of cDNAs containing the other substitutions at the tyrosine residue did not result in infectious virus. The recovered viruses demonstrated kinetics of replication similar to those of the wild-type virus, as measured by [3H]uridine incorporation at either 37 or 39 degrees C. RNA sequence analysis of the 3Dpol gene of both viruses demonstrated that the tyrosine-to-phenylalanine or tyrosine-to-methionine mutation was still present. No other differences in the 3Dpol gene between the wild-type and phenylalanine-containing virus were found. The virus containing the methionine mutation also contained two other nucleotide changes from the wild-type 3Dpol sequence; one resulted in a glutamic acid-to-aspartic acid change at amino acid 108 of the polymerase, and the other resulted in a C-to-T base change at nucleotide 6724, which did not result in an amino acid change. To confirm that the second amino acid mutation found in the 3Dpol gene of the methionine-substituted virus allowed for replication ability, a mutation corresponding to the glutamic acid-to-aspartic acid change was made in the polymerase containing the methionine substitution, and this double-mutant polymerase was expressed in E. coli. The double-mutant enzyme was as active as the wild-type enzyme under in vitro assay conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Four new mutations in the cystathionine beta-synthase (CBS) gene have been identified in Italian patients with homocystinuria. The first mutation is a G-to-A transition at base 374 in exon 3, causing an arginine-to-glutamic acid substitution at position 125 of the protein (R125Q). This mutation has been found in homozygosity in a patient partially responsive to pyridoxine treatment. The second mutation is a C-to-T transition at base 770 in exon 7, causing a threonine-to-methionine substitution at amino acid 257 of the protein (T257M). This mutation has been observed in homozygosity in a patient nonresponsive to the cofactor treatment. The third mutation, found in heterozygosity in a patient responsive to pyridoxine treatment, is an insertion of 68 bp in exon 8 at base 844, which introduces a premature termination codon. The fourth mutation is C-to-T transition in exon 2 at base 262, causing a proline-to-serine substitution at position 88 of the protein (P88S). This mutation is carried on a single allele in three affected sisters responsive to the cofactor treatment. In addition, six previously reported mutations (A114V, E131D, P145L, I278T, G307S, and A1224-2C) have been tested in 14 independent Italian families. Mutations A114V and I278T are carried by three and by seven independent alleles, respectively. The other four mutations--including G307S and A1224-2C, common among northern European patients--have not been detected.  相似文献   

12.
Summary The change in DNA responsible for partial hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency in three brothers has been determined by polymerase chain amplification and sequencing. An A-to-G substitution at base 155 in exon 3 predicts a change in aspartic acid 52 to glycine. Allele-specific polymerase chain amplification verified the presence of the mutation in genomic DNA and provides a means of direct diagnostic assay.  相似文献   

13.
Summary Despite marked genetic heterogeneity in families with hemophilic patients, transition mutations in CG dinucleotides occur frequently. Of 71 CG dinucleotides in the factor VIII cDNA, a C-to-T transition in 12 would lead to a new Stop codon (CGA to TGA). Using restriction enzyme digestion of 11 amplified DNA fragments, seven point mutations were localized among 60 patients with severe hemophilia A. Five were detected as loss of a natural or introduced TaqI site at codons -5, 583, 1941, 2116, and 2209 and were confirmed as CGA (Arg) to TGA (Stop) nonsense mutations by DNA sequencing. A novel C-to-T nonsense mutation was detected as loss of the RsaI site at codon 1966 and confirmed by sequence in two unrelated individuals. Two partial gene deletions were detected as selective failure to amplify exon 1 and exons 15–22, respectively. In an additional (61st) patient who was subsequently found to have mild (instead of severe) hemophilia, digests suggested a mutation in codon 1696. Upon sequencing, this codon contained a novel missense mutation, a C-to-G transversion changing CGA (Arg 1696) to GGA (Gly). In four families with women available for testing, carrier status was rapidly determined by direct screening for the point mutation. In two of three with sporadic occurrences, the mother was a carrier as were two of four sisters. In the other family, the mother and a sister were homozygous for the TaqI cleavage site in their amplified exon 24 fragment, indicating a de novo C-to-T transition in codon 2209 in the patient's factor VIII gene. This final patient's sister was a noncarrier even though by linkage analysis she inherited the same factor VIII gene as her brother.These results have already been published in part in abstract form: Reiner AP, Thompson AR (1990) Circulation Research 82:304  相似文献   

14.
We have discovered two different point mutations in a single codon of the X-linked androgen-receptor (AR) gene in two pairs of unrelated families who have complete androgen insensitivity (resistance) associated with different AR phenotypes in their genital skin fibroblasts. One mutation is a C-to-T transition at a CpG sequence near the 5' terminus of exon 6; it changes the sense of codon 773 from arginine to cysteine, ablates specific androgen-binding activity at 37 degrees C, and eliminates a unique KpnI site at the intron-exon boundary. The other mutation is a G-to-A transition that changes amino acid 773 to histidine and eliminates an SphI site. This mutant AR has a normal androgen-binding capacity at 37 degrees C but has a reduced affinity for androgens and is thermolabile in their presence. Transient transfection of COS cells with cDNA expression vectors yielded little androgen-binding activity at 37 degrees C from Arg773Cys and abundant activity with abnormal properties from Arg773His, thereby providing the pathogenicity of both sequence alterations. This conclusion coincides with the following facts about evolutionary preservation of the position homologous to Arg773 in the AR: it is occupied by Arg or lysine in the progesterone, glucocorticoid, and mineralocorticoid receptors, and it is within a 14-amino-acid region of their steroid-binding domains that share approximately 85% amino acid identity.  相似文献   

15.
Summary -Thalassemia mutations in 71 chromosomes of Thai patients from the northeast, the middle and the south of the country were investigated using dot blot hybridization of PCR (polymerase chain reaction)-amplified DNA with allelespecific oligonucleotide probes. Eight different known molecular defects were detected, at different frequencies. There was an amber mutation in codon 17, a C-T transversion at position 654 of IVS-2, a frameshift mutation between codons 71 and 72, an A-G transition at nucleotide -28 within the TATA box (known as Chinese mutations), a G-T transversion at position 1 of IVS-1 (an Indian mutation), a 4bp deletion in codons 41/42 and a G-C transversion at position 5 of IVS-1 (described as both Chinese and Indian mutations) and a Thai original mutation, an ochre mutation in codon 35. Analysis of the three unknown alleles by DNA sequencing of the cloned DNA fragment amplified by PCR revealed an A-G substitution at the second position of the codon for amino acid 19 (AAC-AGC). The analytic approach used in the present study and the characteristic distribution of mutations in each region of Thailand will prove useful for setting up a prenatal diagnosis program.  相似文献   

16.
Three adult patients with acid beta-galactosidase deficiency/GM1 gangliosidosis who were from two unrelated families of Scandinavian descent were found to share a common point mutation in the coding region of the corresponding gene. The patients share common clinical features, including early dysarthria, mild ataxia, and bone abnormalities. When cDNA from the two patients in family 1 was PCR amplified and sequenced, most (39/41) of the clones showed a C-to-T transition (C-->T) at nucleotide 245 (counting from the initiation codon). This mutation changes the codon for Thr(ACG) to Met(ATG). Mutant and normal sequences were also found in that position in genomic DNA, indicating the presence of another mutant allele. Genomic DNA from the patient in family 2 revealed the same point mutation in one allele. It was determined that in each family only the father carried the C-->T mutation. Expression studies showed that this mutation produced 3%-4% of beta-galactosidase activity, confirming its deleterious effects. The cDNA clones from the patients in family 1 that did not contain the C-->T revealed a 20-bp insertion of intronic sequence between nucleotides 75 and 76, the location of the first intron. Further analysis showed the insertion of a T near the 5' splice donor site which led to the use of a cryptic splice site. It appears that the C-->T mutation results in enough functional enzyme to produce a mild adult form of the disease, even in the presence of a second mutation that likely produces nonfunctional enzyme.  相似文献   

17.
Puroindoline genes pinA and pinB are the main components of the 15 kD friabilin protein reported to be associated with kernel softness. However, grain hardness of Hyb65 and NI5439, the two Indian wheat varieties, could not be explained based on the earlier identified alleles in puroindolines in wheat. Hyb65 and NI5439 are hard but based on the earlier identified allelic forms of puroindolines both the varieties could have been soft. In this investigation, puroindolines (a and b) from Hyb65 and NI5439 were characterised to understand their role in determining grain hardness. The sequence of puroindoline genes from both the varieties indicated that there was no mutation in pinA. However, there was frame shift mutation in pinB generated by insertion of a guanine residue 126 bp downstream from the start codon in both the varieties. This created new hardness allele of pinB designated as pinb-D1h. Frame shift also culminated into stop codon (TGA) 231 bp downstream from the start codon terminating protein synthesis at 77th amino acid position. Five more stop codons (4TGA & 1TAG) were also created to the downstream positions of the first stop codon because of frame shift. There was additional point mutation in NI5439 (transition from A to G) resulting into change of amino acid residue from thymine to arginine at 205th nucleotide position. Thus single nucleotide change in pinB resulted into truncated pin B and consequently the harder texture.  相似文献   

18.

Background

In a previous study of higher-level arthropod phylogeny, analyses of nucleotide sequences from 62 protein-coding nuclear genes for 80 panarthopod species yielded significantly higher bootstrap support for selected nodes than did amino acids. This study investigates the cause of that discrepancy.

Methodology/Principal Findings

The hypothesis is tested that failure to distinguish the serine residues encoded by two disjunct clusters of codons (TCN, AGY) in amino acid analyses leads to this discrepancy. In one test, the two clusters of serine codons (Ser1, Ser2) are conceptually translated as separate amino acids. Analysis of the resulting 21-amino-acid data matrix shows striking increases in bootstrap support, in some cases matching that in nucleotide analyses. In a second approach, nucleotide and 20-amino-acid data sets are artificially altered through targeted deletions, modifications, and replacements, revealing the pivotal contributions of distinct Ser1 and Ser2 codons. We confirm that previous methods of coding nonsynonymous nucleotide change are robust and computationally efficient by introducing two new degeneracy coding methods. We demonstrate for degeneracy coding that neither compositional heterogeneity at the level of nucleotides nor codon usage bias between Ser1 and Ser2 clusters of codons (or their separately coded amino acids) is a major source of non-phylogenetic signal.

Conclusions

The incongruity in support between amino-acid and nucleotide analyses of the forementioned arthropod data set is resolved by showing that “standard” 20-amino-acid analyses yield lower node support specifically when serine provides crucial signal. Separate coding of Ser1 and Ser2 residues yields support commensurate with that found by degenerated nucleotides, without introducing phylogenetic artifacts. While exclusion of all serine data leads to reduced support for serine-sensitive nodes, these nodes are still recovered in the ML topology, indicating that the enhanced signal from Ser1 and Ser2 is not qualitatively different from that of the other amino acids.  相似文献   

19.
Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by congenital ichthyosis, spastic di- or tetraplegia, and mental retardation. SLS has been reported to occur in many populations but the highest incidence is in the north of Sweden. The gene causing SLS encodes a fatty aldehyde dehydrogenase (FALDH). In the present study, a point mutation in exon 7 of the FALDH gene was found in SLS patients of northern Swedish origin. The mutation consists of a C-to-T exchange at nucleotide position 943 in the cDNA. As a consequence, a highly conserved proline is replaced by a serine. The mutation was found in 49 out of 58 affected chromosomes and could be the most widely spread SLS mutation in the world.  相似文献   

20.
Human liver cholesterol 7 alpha-hydroxylase (CYP7) cDNAs were isolated from a human liver cDNA library. A full-length cDNA has 2901 nucleotides which encode a typical P450 polypeptide of 504 amino acid residues. Two different sequences of codon 100, TTT (Phe) and TCT (Ser), were identified in cDNA clones. In addition, codons 347 and 385 are GAT (Asp) and GAC (Asp) in all cDNA clones, whereas those reported previously (FEBS Lett. 268, 137-140, 1990) are AAT (Asn) and AGC (Ser), respectively. Since there is only one 7 alpha-hydroxylase gene in the human genome, it is likely that polymorphisms at the codon 100 of cDNA clones arise from two different alleles in the 7 alpha-hydroxylase gene of this human liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号