首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies demonstrate polynuclear aromatic hydrocarbons (PAHs) dissolved from weathered crude oil adversely affect fish embryos at 0.5 to 23 μg/l. This conclusion has been challenged by studies that claim (1) much lower toxicity of weathered aqueous PAHs; (2) direct contact with dispersed oil droplets plays a significant role or is required for toxicity; (3) that uncontrolled factors (oxygen, ammonia, and sulfides) contribute substantively to toxicity; (4) polar compounds produced by microbial metabolism are the major cause of observed toxicity; and (5) that based on equilibrium models and toxic potential, water contaminated with weathered oil cannot be more toxic per unit mass than effluent contaminated with fresh oil. In contrast, several studies demonstrate high toxicity of weathered oil; shifts in PAH composition were consistent with dissolution (not particle ablation), embryos accumulated dissolved PAHs at low concentrations and were damaged, and assumed confounding factors were inconsequential. Consistent with previous empirical observations of mortality and weathering, temporal shifts in PAH composition (oil weathering) indicate that PAHs dissolved in water should (and do) become more toxic per unit mass with weathering because high molecular weight PAHs are more persistent and toxic than the more abundant low molecular weight PAHs in whole oil.  相似文献   

2.
The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective remediation processes. Many common PAHs are biodegradable, leading to studies investigating the potential of sediment bioremediation. This article reviews several factors that currently complicate the implementation of sediment bioremediation processes: the effect of complex mixtures of contaminants on the rate and extent of degradation observed, the bioavailability of PAHs in sorbed- and nonaqueous-phase, and methods being evaluated to enhance degradation/availability (surfactant-enhanced solubility, nutrient addition, and bioaugmentation). Received 13 November 1995/ Accepted in revised form 23 July 1996  相似文献   

3.
Klapwijk  A.  Snodgrass  W. J. 《Hydrobiologia》1982,91(1):207-216
This research examines the role of sediment nitrification and denitrification in the nitrogen cycle of Hamilton Harbour. The Harbour is subject to large ammonia and carbon loadings from a waste-water treatment plant and from steel industries. Spring ammonia concentrations rapidly decrease from 4.5 to 0.5 mg 1−1, while spring nitrate concentrations increase from 1 to 2 mg l−1, by mid-summer. A three-layer sediment model was developed. The first layer is aerobic; in it, oxidation of organics and nitrification occurs. The second layer is for denitrification, and the third layer is for anaerobic processes. Ammonia sources for nitrification include diffusion from the water column, sources associated with the oxidation of organics, sources from denitrification and from anaerobic processes. Diffusion of oxygen, ammonia and nitrate across the sediment-water interface occurs. Temperature effects are modelled using the Arrhenius concept. A combination of zero-order kinetics for nitrate or ammonia consumption with diffusion results in a half-order reaction, with respect to the water column loss rate to sediments. From experimental measurement, the rate of nitrification is 200 mg N 1−1 sediment per day, while that of denitrification is 85 mg N 1–1 sediment per day at 20 °C. The Arrhenius activation energy is estimated as 15 000 cal/ mole-K and 17 000 cal/ mole-K for nitrification and denitrification, respectively, between 10 °C and 20 °C. Calculations of the flux of ammonia with the sediments, using the biofilm model, compare favourably with experimental observations. The ammonia flux from the water column is estimated to account for 20% of the observed decrease in water column stocks of ammonia, while the nitrate flux from the water column is estimated to account for 25% of the total nitrogen produced by the sediments.  相似文献   

4.
微生物降解多环芳烃的研究进展   总被引:8,自引:0,他引:8  
多环芳烃(PAHs)是具有严重危害的环境污染物质。介绍PAHs的降解菌,降解机理和PAHs的生物修复方面的研究进展。土壤中PAHs的生物修复被认为是解决污染的有效方法,目前,菲的生物降解途径已经比较清楚,但对结构更为复杂的多环芳烃研究较少。文章还对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

5.
多环芳烃降解菌的筛选与降解能力测定   总被引:3,自引:0,他引:3  
从本溪多环芳烃(PAHs)污染土壤中经富集培养筛选出8株PAHs降解菌,研究了8株菌及其等比例混合培养对菲、芘和苯并[a]芘的降解能力。结果表明,在28℃,培养基中菲、芘和苯并[a]芘的浓度分别为50、50和5mg·L-1的复合底物条件下,培养28d后,菌株B3的降解效果最好,对菲、芘和苯并[a]芘的降解率分别为88.4%、54.0%和68.4%,8株菌的混合培养对菲、芘和苯并[a]芘的降解率分别为87.7%、35.3%和42.0%;经生理生化实验和16SrRNA序列比对,初步鉴定B3菌为假单胞菌属(Pseudomonas sp.)。  相似文献   

6.
微生物降解多环芳烃(PAHs)的研究进展   总被引:13,自引:0,他引:13  
从多环芳烃(PAHs)的降解菌株的筛选、降解机制以及PAHs污染的生物修复等方面介绍了微生物降解PAHs的最新研究进展。  相似文献   

7.
The character of polycyclic aromatic hydrocarbons (PAH) in sediments of the Thea Foss and Wheeler-Osgood Waterways in Tacoma, Washington, were investigated with the objective of determining the general source(s) of these compounds to the waterways. In this study, 42 near-surface sediment samples from the Waterways were collected and analyzed for their (1) concentration of 43 individual or groups of PAH, (2) total extractable hydrocarbon “fingerprint” and concentration, (3) grain size and (4) total organic carbon content. Analysis of the sediment data, including comparisons to standard reference materials, indicates that all but two samples contained PAH derived from a pyrogenic source(s), i.e., a non-petroleum source(s). The high concentrations and characteristic distributions of PAH in some sediment samples were consistent with the occurrence of manufactured gas plant (MGP) derived tar(s) or tar distillate(s), particularly in some sediments proximal to a historic MGP and tar distillate storage operation near the head of the Thea Foss Waterway. Most other sediment samples throughout the Waterways contained PAH distributions and concentration indicating (at least) a greater proportion of PAH are derived from urban runoff/fallout.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic nonaqueous‐phase liquid (NAPL) contaminants of critical environmental concern. The treatment method used for a contaminated soil depends primarily on the nature and extent of the contamination as well as the cost effectiveness of the method. Current research has shown that bioremediation is perhaps the simplest and most economic process for the treatment of large contaminated areas. Although bioremediation feasibility and effectiveness has been well documented, additional information is required to fully understand subsurface kinetics. Specifically, the importance and effect of interactions between bacteria, supplemental nutrients, oxygen source, contaminant, and soil type must be understood. Preliminary respirometer experiments have been conducted to address these factors for the development of a kinetic model for both steady‐state and unsteady‐state conditions.  相似文献   

9.
土壤中多环芳烃的微生物降解及土壤细菌种群多样性   总被引:4,自引:0,他引:4  
利用室内模拟方法,研究中、低浓度多环芳烃(PAHs)污染土壤的微生物修复效果,阐明土壤微生物(接种和土著)与PAHs降解的关系.结果表明:投加PAHs高效降解菌可以促进土壤中PAHs的降解,2周内效果显著;典型PAHs降解的难易程度依据为:菲<蒽<芘<苯并(a)芘和屈;细菌种群丰度和多样性均与PAHs降解呈负相关关系,同一处理细菌种群结构随时间变化不大.对于中、低浓度PAHs原位污染土壤,增强土著菌的活性是提高土壤PAHs降解率的有效途径之一.  相似文献   

10.
三株降解芘的戈登氏菌鉴定及其降解能力   总被引:1,自引:0,他引:1  
Hu FC  Li XY  Su ZC  Wang XJ  Zhang HW  Sun JD 《应用生态学报》2011,22(7):1857-1862
从沈抚灌区多环芳烃污染土壤中筛选出的芘降解菌D44、D82S和D82Q,经形态观察、生理生化试验和16S rDNA序列分析确定均为戈登氏菌属(Gordonia sp.).3株菌的最适生长pH值均为7,当pH值低于5或高于9时,生长均受到明显抑制.降解试验表明,3株菌能以芘、苯并芘、蒽、萘、菲和荧蒽为唯一碳源和能源生长.经过7 d的培养,3株菌对初始浓度为100 mg.L-1的芘的降解率均在65%以上,对初始浓度为50 mg.L-1的苯并芘的降解率分别为79.6%、91.3%和62.8%.通过PCR检测发现D82Q和D82S含有烷烃单加氧酶基因alkB.  相似文献   

11.
Bioremediation represents one of the most cost-effective technologies for treatment of petroleum hydrocarbons in contaminated surface soils. A major concern for regulatory agencies when evaluating bioremediation is how to determine acceptable levels for residual organics in soil. Although guidelines have been developed for some organics in soil, limited information is available to define acceptable levels of the metabolites of biological degradation. The products of oxidative degradation are likely to be more water soluble and may also be more toxic. The purpose of the current study was to monitor changes in compound concentration and genotoxicity in soils undergoing bioremediation. The site selected for this study was a former wood-preserving site in the northwestern United States. Soil samples were collected over a 4-year period from two 6075-m2 land treatment units. Conditions for biodegradation were enhanced by the addition of water and nutrients, as well as by frequent tilling to add oxygen. Due to the location of the facility, the temperature was conducive to a more rapid rate of biodegradation for approximately 6 months per year. Soil samples were collected using a grid system and solvent extracted. Polycyclic aromatic hydrocarbons were quantified in soil extracts using gas chromatography-mass spectrometry (GC/MS), and genotoxicity measured using the Salmonella/microsome assay. After 2 years of treatment, concentrations of total and carcinogenic polycyclic aromatic hydrocarbons (PAHs) were reduced to approximately 10% the concentration in the untreated soil. However, the mean weighted activity of the untreated soil was 293 net revertants per g soil, whereas the extracts of soil collected after 2 years induced a mean weighted activity of 325 net revertants per g soil. Thus, although biodegradation clearly reduced the concentration of total and carcinogenic PAHs in the surface soils, the results from the genotoxicity bioassay indicate that there was a lag in the reduction of mutagenicity in treated soils.  相似文献   

12.
Aims: To characterize polycyclic aromatic hydrocarbon (PAH)‐degrading bacteria from sediments of the Bizerte lagoon, and to determine their ability to resist other pollutants such as antibiotics and heavy metals. Methods and Results: More than 100 strains were isolated for their ability to use fluoranthene as the sole carbon and energy source. Most of them showed antibiotic and heavy metal resistance; 20 representative strains were selected for further analysis. 16S rRNA coding sequences analysis showed that the majority of the selected bacteria (75%) were affiliated to the Gammaproteobacteria. The selected strains also utilized high molecular weight PAHs containing up to four benzene rings and showed different profiles of PAH substrate usage suggesting different PAH degradation pathways. These results are consistent with the fact that nah‐like genes and idoA‐like genes, involved in PAH degradation, were detected in 6 and 1 strains respectively. Conclusions: The Bizerte lagoon, polluted by many human activities, leads to the co‐selection of strains able to cope with multiple contaminants. Significance and Impact of the Study: Polluted areas are often characterized by the concomitant presence of organic pollutants, heavy metals and antibiotics. This study is one of the first showing bacterial strains adapted to multiple contaminants, a promising potential for the development of bioremediation processes.  相似文献   

13.
Substrate depletion experiments were conducted to characterize aerobic biodegradation of 20 single polycyclic aromatic hydrocarbons (PAHs) by induced Sphingomonas paucimobilis strain EPA505 in liquid suspensions. PAHs consisted of low molecular weight, unsubstituted, and methyl-substituted homologs. A material balance equation containing the Andrews kinetic model, an extension of the Monod model accounting for substrate inhibition, was numerically fitted to batch depletion data to estimate extant kinetic parameters including the maximal specific uptake rates, q(max), the affinity coefficients, K(S), and the substrate inhibition coefficients, K(I). Strain EPA505 degraded all PAHs tested. Applied kinetic models adequately simulated experimental data. A cell proliferation assay involving reduction of the tetrazolium dye WST-1 was used to evaluate the ability of strain EPA505 to utilize individual PAHs as sole energy and carbon sources. Of the 22 PAHs tested, 9 supported bacterial growth. Evaluation of the biokinetic data showed that q(max) correlated highly with transmembrane flux as theoretically estimated by a diffusion model, pointing to transmembrane transport as a potential rate-determining process. The biodegradability data generated in this study is essential for the development of quantitative structure-activity relationships (QSARs) for biodegradability and for modeling biodegradation of simple PAH mixtures.  相似文献   

14.
A weathered medium crude oil was applied to experimental plots of Scirpus pungens (Three-square Bulrush) in a freshwater wetland to determine the efficacy of strategies for shoreline oil spill bioremediation based on nutrient enrichment (bioremediation) and plant growth (phytoremediation). Plots were unoiled, oiled with no added nutrients, or oiled with repeated applications of phosphate and nitrate fertilizers. Following initial treatments, the experimental plots were raked to simulate the activity of wave action on oil penetration, and plants in one fertilized plot were cut repeatedly. The sediments were sampled at regular intervals for 15 months after oiling, and the loss of oil was assessed by 4-day laboratory tests of polynuclear aromatic hydrocarbon (PAH) bioaccumulation by trout, as demonstrated by increases in activity of liver cytochrome P450 (CYP1A) enzymes. Oil alone, oil mixed with sediments in the lab, and oiled sediments from treated plots all induced CYP1A activity relative to untreated controls, indicating the presence and bioavailability of PAH. Induction did not vary with nutrient treatments, but declined by 80% within 15 months of oiling, and chemical analyses indicated equivalent losses of hydrocarbons in sediment. These results demonstrate that bioavailable PAHs persisted in measurable quantities for at least 1.25 years following oiling, and that stimulation of plant growth did not affect the rate of oil disappearance. The controlling factors were likely weathering and sediment movement.  相似文献   

15.
【背景】多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是一类高毒性的有机污染物,在海洋环境尤其是沿海环境中广泛分布。海草床生态系统作为沿海环境的重要组成部分,深受环境污染等人类活动的影响而处于严重衰退的状态。微生物修复是修复环境中多环芳烃污染的重要途径,具有经济简便、环境友好和无二次污染等特点。【目的】从深圳市大亚湾的海草床沉积物中筛选获得高效多环芳烃降解菌,并分析其降解特性,从而探究海草床生态系统中多环芳烃污染物的微生物修复可行性。【方法】以多环芳烃菲为唯一碳源从海草床沉积物样品中筛选菌株,再通过形态学观察、生理生化实验和16SrRNA基因序列对筛选的菌株进行鉴定,并利用特定引物扩增多环芳烃降解的功能基因——双加氧酶(nidA)基因,最后通过培养实验分析该菌株对菲的降解特性。【结果】筛选出一株高效降解菲的菌株SCSIO 43702,经鉴定为玫瑰杆菌属(Roseovarius)的潜在新菌,并成功扩增得到双加氧酶相似(nidA like)基因;培养实验结果表明,玫瑰杆菌SCSIO 43702在10 d内对100 mg/L菲的降解率最高可达96%,而且其对菲的最适降解条件为:温度30°C、pH值7.5和8.0、盐度3%。【结论】玫瑰杆菌SCSIO 43702凭借其良好的菲降解能力和较强的环境适应性,具有进一步被开发为微生物菌剂以用于多环芳烃污染修复的巨大潜力,为海草床生态系统中多环芳烃污染的微生物修复研究提供了理论依据和可利用的微生物资源。  相似文献   

16.
An integrated monitoring, of chemical, microbiological and ecotoxicological parameters, was performed for a biotreatability study of polycyclic aromatic hydrocarbons (PAHs)—contaminated brackish sediments. Three slurry reactors were prepared, consisting of (a) a slurry with sediment and seawater called TQ slurry, to evaluate the intrinsic bioremediation potential, (b) a slurry with the addition of a selected microbial consotrium called BIO slurry, to evaluate the bioaugmentation effect, (c) a slurry with the addition of Soya lecithin called LEC slurry, to evaluate the effect of the addition of a natural surfactant. Biodegradation results showed that both BIO and LEC slurries enhanced PAHs removal, increasing the biodegradation rate for 5- and 6-ring PAHs. Furthermore, ecotoxicological response (Microtox® assay on whole sediment, aqueous extract and organic extract) demonstrated a detoxification of the PAHs initial mixture only for BIO slurry. The findings that aerobic PAHs degradation can be stimulated via inoculation with adapted sediment bacteria suggest that a bioaugmentation process may be a useful strategy for ex-situ treatment.  相似文献   

17.
大西洋洋中脊深海多环芳烃降解菌群的优势菌分析   总被引:3,自引:1,他引:2  
摘要:【目的】为了分析大西洋洋中脊深海海水及表层沉积物中多环芳烃(PAHs)降解菌群中的优势菌。【方法】采用富集培养法和平板涂布法从深海样品中分离可培养细菌及PAHs降解菌。通过16S rRNA基因测序完成系统发育分析。采用变性梯度凝胶电泳(DGGE)及DNA测序分析降解菌群中的优势菌。【结果】总共分离到16株细菌,包括一株PAHs降解菌Novosphingobium sp. 4D。系统发育分析发现,可培养细菌中两个最大的类群分别与Alcanivorax dieselolei NO1A(5/16)和Tistrella mobilis TISTR 1108T(5/16)亲缘关系最近。DGGE结果表明,在菌群MC2D中菌株4L(以及4M、4N, Alcanivorax dieselolei NO1A, 99.21%)、4D(Novosphingobium pentaromativorans US6-1T,97.07%)和4B(以及4E、4H、4K,Tistrella mobilis TISTR 1108T,>99%)是降解菌群中的优势菌。而降解菌群MC3CO中的优势菌是菌株5C(以及5H,Alcanivorax dieselolei NO1A,>99%)、条带5-8代表的未培养菌株(Novosphingobium aromaticivorans DSM 12444T,99.41%)、5J(Tistrella mobilis TISTR 1108T,99.52%)和5F(以及5G,Thalassospira lucentensis DSM 14000T,<97%)。【结论】本研究发现在大西洋洋中脊深海海水及表层沉积物中Alcanivorax、Novosphingobium、Thalassospira、Tistrella属的细菌是PAHs降解菌群中的优势菌,其中的主要降解菌是Novosphingobium属的细菌。  相似文献   

18.
Liu JJ  Wang XC  Fan B 《Bioresource technology》2011,102(9):5305-5311
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in a domestic wastewater treatment plant (WWTP) was investigated in a 1 year period. In order to understand how PAHs were removed at different stages of the treatment process, adsorption experiments were conducted using quartz sand, kaolinite, and natural clay as inorganic adsorbents and activated sludge as organic adsorbent for adsorbing naphthalene, phenanthrene, and pyrene. As a result, the adsorption of PAHs by the inorganic adsorbents well followed the Langmuir isotherm while that by the activated sludge well followed the Freundlich isotherm. By bridging equilibrium partitioning coefficient with the parameters of adsorption isotherm, a set of mathematical models were developed. Under an assumption that in the primary settler PAHs removal was by adsorption onto inorganic particles and in the biological treatment unit it was by adsorption onto activated sludge, the model calculation results fairly reflected the practical condition in the WWTP.  相似文献   

19.
The kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas paucimobilis strain EPA505 were investigated. The investigation focused on three- and four-ring PAHs, specifically 2-methylphenanthrene, fluoranthene, and pyrene. Uptake rates in aerobic batch suspended cultivations were measured for the individual PAHs and their binary and ternary mixtures. It was observed that kinetics were influenced by the mixture composition and the kinetic properties of the components. A material balance equation containing the Monod model was numerically fitted to uptake data to determine extant kinetic parameters for the individual PAHs. Similarly, equations containing kinetic interaction models derived from enzyme kinetics were fitted to the uptake data obtained from experiments with binary and ternary mixtures. The investigation considered the following interaction types: no-interaction (Monod), pure competitive interaction, noncompetitive or mixed-type interaction, uncompetitive inhibition, and nonspecific interaction based on pure competition (SKIP). Model fit was evaluated based on probabilistic and statistical criteria and inferences were reached about underlying interaction mechanisms based on model fit. Mixture kinetics were most adequately simulated by the pure competitive interaction model with mutual substrate exclusivity. This model is fully predictive, relying only on parameters determined in the sole-PAH experiments. It was shown that for low percent inhibition values and with limited data, pure competitive interaction kinetics may not be evident, resembling no-interaction kinetics. This study is a reasonable starting point for understanding and modeling biodegradation of complex PAH mixtures in engineered and natural systems.  相似文献   

20.
Petroleum pollution is a global problem that requires effective and accessible remediation strategies that takes ecosystem functioning into serious consideration. Bioremediation can be an effective tool to address the challenge. In this study, we used a mesocosm experiment to evaluate the effects of locally sourced and community produced biochar and compost amendments on diesel-contaminated soil. At the end of the 90-day experiment, we quantified the effects of the amendments on total petroleum hydrocarbons (C9-C40) (TPH) and soil pH, organic matter, aggregate stability, soil respiration, extractable phosphorus, extractable potassium, and micronutrients (Mg, Fe, Mn, and Zn). We observed significantly higher TPH degradation in compost-amended soils than in controls and soils amended with biochar. We propose that the addition of compost improved TPH biodegradation by augmenting soil nutrient content and microbial activity. Our results suggest that community-accessible compost can improve TPH biodegradation, and that implementation is possible at the community level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号