首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ketone bodies become major body fuels during fasting and consumption of a high-fat, low-carbohydrate (ketogenic) diet. Hyperketonemia is associated with potential health benefits. Ketone body synthesis (ketogenesis) is the last recognizable step of lipid energy metabolism, a pathway that links dietary lipids and adipose triglycerides to the Krebs cycle and respiratory chain and has three highly regulated control points: (1) adipocyte lipolysis, (2) mitochondrial fatty acids entry, controlled by the inhibition of carnitine palmityl transferase I by malonyl coenzyme A (CoA) and (3) mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase, which catalyzes the irreversible first step of ketone body synthesis. Each step is suppressed by an elevated circulating insulin level or insulin/glucagon ratio. The utilization of ketone bodies (ketolysis) also determines circulating ketone body levels. Consideration of ketone body metabolism reveals the mechanisms underlying the extreme fragility of dietary ketosis to carbohydrate intake and highlights areas for further study.  相似文献   

2.
It is recognized that ketone bodies, such as R-beta-hydroxybutyrate (beta-HB) and acetoacetate, are energy sources for the brain. As with glucose metabolism, monocarboxylate uptake by the brain is dependent on the function and regulation of its own transporter system. We concurrently investigated ketone body influx, blood flow, and regulation of monocarboxylate transporter (MCT-1) and glucose transporter (GLUT-1) in diet-induced ketotic (KG) rat brain. Regional blood-to-brain beta-HB influx (micromol.g(-1).min(-1)) increased 40-fold with ketosis (4.8 +/- 1.8 plasmabeta-HB; mM) in all regions compared with the nonketotic groups (standard and no-fat diets); there were no changes in regional blood flow. Immunohistochemical staining revealed that GLUT-1 density (number/mm2) in the cortex was significantly elevated (40%) in the ketotic group compared with the standard and no-fat diet groups. MCT-1 was also markedly (3-fold) upregulated in the ketotic group compared with the standard diet group. In the standard diet group, 40% of the brain capillaries stained positive for MCT-1; this amount doubled with the ketotic diet. Western blot analysis of isolated microvessels from ketotic rat brain showed an eightfold increase in GLUT-1 and a threefold increase in MCT-1 compared with the standard diet group. These data suggest that diet-induced ketosis results in increased vascular density at the blood-brain barrier without changes in blood flow. The increase in extraction fraction and capillary density with increased plasma ketone bodies indicates a significant flux of substrates available for brain energy metabolism.  相似文献   

3.
4.
Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders.  相似文献   

5.
A Fenselau  K Wallis 《Life sciences》1974,15(4):811-818
Succinyl-CoA: acetoacetate CoA transferases from rat kidney, heart, brain, and skeletal muscle display substrate inhibition by acetoacetate that is characterized by an “inversion concentration” of 4–6 mM acetoacetate, i.e., at acetoacetate concentrations greater than 5 mM inhibition is detectable. A similar effect is manifested with intact, uncoupled kidney mitochondria, suggesting that mitochondrial oxidation of ketone bodies can reflect CoA transferase kinetic properties with regard to acetoacetate inhibition. Since acetoacetate substrate inhibition of rat CoA transferase becomes apparent at concentrations that correspond to the plasma concentrations of total ketone bodies found during pathological ketosis, this substrate inhibotory effect may play a role in establishing the disturbed metabolic pattern of ketone bodies in diabetic animals.  相似文献   

6.
The interactions between acetate or ethanol metabolism, lipogenesis, and ketone body utilization have been studied in isolated livers from fed rats perfused with 15 mM glucose and 10 mM acetate or ethanol. The contribution of acetate to ketogenesis is constant; on the other hand, the contribution of ethanol to ketogenesis increases with time, presumably because of the accumulation of acetate in the perfusate. Ketogenesis is decreased in the presence of ethanol (but not acetate), while ketone body utilization is not affected by ethanol or acetate. Acetate contributes one third and ethanol contributes one half of the carbon incorporated into fatty acids and 3-beta-hydroxysterols. Only a small fraction (less than 5%) of the incorporation of acetate or ethanol into fatty acids and sterols occurs via transient incorporation into ketone bodies.  相似文献   

7.
Ketogenesis is the production of ketone bodies, which provide energy when the body lacks glucose. Under ketogenic conditions, the body switches from primarily carbohydrate to fat metabolism to maintain energy balance. However, accumulation of high levels of ketone bodies in the blood results in ketosis. Treating ketosis with natural substances is preferable, because they are unlikely to cause side-effects. Momilactone B is an active compound isolated from Korean rice. Based on previous studies, we hypothesized that momilactone B could inhibit ketosis. We constructed an in vitro ketosis model by glucose starvation. We used this model to test the anti-ketosis effects of momilactone B. A primary target for treating ketosis is angiopoietin-like-3 (ANGPTL3), which modulates lipoprotein metabolism by inhibiting lipoprotein lipase (LPL), a multifunctional enzyme that breaks down stored fat to produce triglycerides. We showed that momilactone B could regulate the ANGPTL3-LPL pathway. However, a strong anti-ketosis candidate drug should also inhibit ketogenesis. Ketogenesis can be suppressed by inhibiting the expression of 3-hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2), a mitochondrial enzyme that converts acetyl-CoA to ketone bodies. We found that momilactone B suppressed the expression of HMGCS2 through the increased expression of STAT5b. We also elucidated the relationship of STAT5b to ANGPTL3 and LPL expression.  相似文献   

8.
The concentration of ketone bodies in blood of suckling rabbits during the first 6 days following birth was higher than that found in the adult. In the liver the activities of the enzymes of ketone body synthesis were higher than in the adult during the same period. In the heart and leg muscle the activities of the enzymes of ketone body utilization were lower than those found in the adult. It is suggested that the capacity of the muscles of the developing rabbit to utilize ketone bodies is not greater than that of the adult and ketone bodies produced by the liver could contribute as fuel for oxidation and/or synthesis to the brain of the newborn rabbit.  相似文献   

9.
By using an in situ rat hindquarter perfusion, we evaluated ketone body utilization and its metabolic effects in the resting muscle of 24 h fasted normal and streptozotocin (STZ)-diabetic rats. Under the perfusion with ketone body-supplementation (1 mM each of acetoacetic acid (AcAc) and 3-hydroxybutyric acid (3-OHB], the AcAc and 3-OHB uptake of STZ-diabetic rats was significantly (P less than 0.05) smaller than that of normal rats. This might be explained by the low enzyme activity of 3-oxoacid CoA transferase demonstrated in the hindlimb muscles of STZ-diabetic rats and this reduced ketone body uptake would be one of the causes of the development of diabetic ketoacidosis. The glucose uptake and the phosphofructokinase (PFK) activity of normal rats were significantly (P less than 0.05) higher than those of STZ-diabetic rats. In both normal and STZ-diabetic rats, the glucose utilization and PFK activity of the muscles in the ketone body-supplemented condition were significantly (P less than 0.05) lower than those in the non-supplemented condition. This inhibition of glucose utilization by ketone bodies should be due to the mechanism by which the oxidation of ketone bodies inhibits PFK in the muscle.  相似文献   

10.
1. The hepatic concentrations of the ketone bodies and of metabolites and activities of enzymes involved in gluconeogenesis were measured in healthy lactating and non-lactating cows 48h after administration of Voren, an ester of dexamethasone, and compared with those found in control animals given saline. Parallel measurements were also made of the blood concentrations of several of the metabolites. 2. Blood glucose concentrations were raised in the Voren-treated animals, whereas blood ketone body and free fatty acid concentrations were unaltered. Similarly there was no change in the hepatic concentrations of the ketone bodies. 3. Significant increases were found in the hepatic concentrations of citrate, 2-oxo-glutarate and malate in both groups of animals given Voren. 4. The hepatic concentrations of those glycolytic intermediates that were measured either decreased or did not change after Voren treatment. 5. The enzymes aspartate transaminase and fructose 1,6-diphosphatase were unchanged in activity after Voren administration, whereas phosphopyruvate carboxylase (EC 4.1.1.32) activity was depressed in the lactating group. However, glucose 6-phosphatase, tryptophan oxygenase and tyrosine aminotransferase increased in activity. 6. In several cases those hepatic metabolites that increased in concentration after Voren administration were present in lower concentration in normal lactating cows than in normal non-lactating cows. The same applied mutatis mutandis to those metabolites that were decreased by Voren. 7. These findings are discussed in relation to the use of glucocorticoids in the treatment of bovine ketosis.  相似文献   

11.
The in vitro effect of different concentrations of beta-hydroxybutyric acid (betaHBA) on bovine milk leukocytes was examined. betaHBA level similar to those found in cows with clinical ketosis induced a significant inhibitory effect on the nitroblue tetrazolium reduction as a mean of assaying the metabolic integrity of macrophages after the phorbol-mirystate- acetate and opsonized zymosan stimulation. In the same way, the H2O2 production after stimulation with both soluble and particulate agents decreased significantly in 33 and 26%, respectively, compared with cells incubated without ketone bodies. This result suggests a possible fault in the microbicidal oxidative activity. The macrophage phagocytosis also decreased in cells treated with different betaHBA concentrations, in relation to that obtained from control cells. Neutrophils migration in agarose was determined, and the mean chemotactic response was higher when the cells were incubated with lower level or absence of ketone bodies. Considering the determined differences, we hypothesize that abnormally high levels of ketone bodies could produce a direct effect on leukocyte membranes. The induction of some modification on the receptor structure impairment the interaction ligand-receptor and this may be, in part, responsible for the higher susceptibility to local infections in mammary gland during subclinical and clinical ketosis.  相似文献   

12.
Isolated cerebral capillaries from developing rats utilize glucose as well as ketone bodies essentially for oxidative metabolism. However, CO2 production from [U-14C]glucose was significantly greater than from ketone bodies (except at 5 mM). Ketone body utilization (in the presence of 5 mM glucose in the incubation medium) was concentration-dependent (up to 5 mM). Lipid synthesis from ketone bodies was comparable to that from glucose up to 1 mM. At concentrations ⩾ 1 mM, acetoacetate incorporation into total lipids and fatty acids was higher than other substrates, however, this difference was statistically significant only at 5 mM. Incorporation of substrates into sterols was very low (> 1 pmol/h/mg protein).  相似文献   

13.
Brain uptake and metabolism of ketone bodies in animal models   总被引:1,自引:0,他引:1  
As a consequence of the high fat content of maternal milk, the brain metabolism of the suckling rat represents a model of naturally occurring ketosis. During the period of lactation, the rate of uptake and metabolism of the two ketone bodies, beta-hydroxybutyrate and acetoacetate is high. The ketone bodies enter the brain via monocarboxylate transporters whose expression and activity is much higher in the brain of the suckling than the mature rat. beta-Hydroxybutyrate and acetoacetate taken up by the brain are efficiently used as substrates for energy metabolism, and for amino acid and lipid biosynthesis, two pathways that are important for this period of active brain growth. Ketone bodies can represent about 30-70% of the total energy metabolism balance of the immature rat brain. The active metabolism of ketone bodies in the immature brain is related to the high activity of the enzymes of ketone body metabolism. Thus, the use of ketone bodies by the immature rodent brain serves to spare glucose for metabolic pathways that cannot be fulfilled by ketones such as the pentose phosphate pathway mainly. The latter pathway leads to the biosynthesis of ribose mandatory for DNA synthesis and NADPH which is not formed during ketone body metabolism and is a key cofactor in lipid biosynthesis. Finally, ketone bodies by serving mainly biosynthetic purposes spare glucose for the emergence of various functions such as audition, vision as well as more integrated and adapted behaviors whose appearance during brain maturation seems to critically relate upon active glucose supply and specific regional increased use.  相似文献   

14.
The effects of a single oral dose of carnitine on fasting-induced ketosis was investigated in four normal individuals, five patients with muscular dystrophy, and one patient with a generalized cytochrome c oxidase deficiency. Plasma carnitine, free fatty acids, glucose, insulin, and glucagon were also measured. Normal individuals showed an average 0.09 mM increase in blood beta-hydroxybutyrate concentration during a 12- to 18-hr period of fasting and carnitine administration did not affect this response (average: 0.12 mM). Muscular dystrophy patients showed a greater fasting-induced elevation in beta-hydroxybutyrate (average 0.29 mM) and carnitine administration greatly enhanced this ketogenic response (average 0.84 mM). The cytochrome c oxidase deficient patient showed an even larger increase in beta-hydroxybutyrate with fasting (1.67 mM) and carnitine further augmented this ketotic effect (3.78 mM). Plasma free fatty acids were also elevated in patients that showed enhanced ketosis. Plasma glucagon concentration did not change, but insulin levels decreased during the 12- to 18-hr period of fasting; no major differences were found between controls and patients. These results indicate that some patients with muscular dystrophy and cytochrome c oxidase deficiency are more prone to develop ketosis than normal individuals and that carnitine administration enhances this response. Since both muscular dystrophy patients and the patient with cytochrome c oxidase deficiency had similar ketogenic responses, the data suggest that ketone body utilization may be impaired in these patients. The ability of L-carnitine to be ketogenic should be considered in the treatment of these patients.  相似文献   

15.
Isolated cerebral capillaries from developing rats utilize glucose as well as ketone bodies essentially for oxidative metabolism. However, CO2 production from [U-14C]glucose was significantly greater than from ketone bodies (except at 5 mM). Ketone body utilization (in the presence of 5 mM glucose in the incubation medium) was concentration-dependent (up to 5 mM). Lipid synthesis from ketone bodies was comparable to that from glucose up to 1 mM. At concentrations 1 mM, acetoacetate incorporation into total lipids and fatty acids was higher than other substrates, however, this difference was statistically significant only at 5 mM. Incorporation of substrates into sterols was very low (> 1 pmol/h/mg protein).  相似文献   

16.
Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.  相似文献   

17.
Elevated level of cellular lipid peroxidation can increase the incidence of vascular disease. The mechanism by which ketosis causes accelerated cellular damage and vascular disease in diabetes is not known. This study was undertaken to test the hypothesis that elevated levels of ketone bodies increase lipid peroxidation in endothelial cells. Human umbilical venous endothelial cells (HUVEC) were cultured for 24 h at 37oC with ketone bodies (acetoacetate, β-hydroxybutyrate). Acetoacetate, but not β-hydroxybutyrate, caused an increase in lipid peroxidation and growth inhibition in cultured HUVEC. To determine whether ketone bodies generate oxygen radicals, studies using cell-free buffered solution were performed. They showed a significant superoxide dismutase (SOD) inhibitable reduction of cytochrome C by acetoacetate, but not by β-hydroxybutyrate, suggesting the generation of superoxide anion radicals by acetoacetate. Additional studies show that Fe2+ potentiates oxygen radical generation by acetoacetate. Thus, elevated levels of ketone body acetoacetate can generate oxygen radicals and cause lipid peroxidation in endothelial cells, providing a possible mechanism for the increased incidence of vascular disease in diabetes.  相似文献   

18.
The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet‐induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U‐13C]glucose or [U‐13C]acetoacetate tracers. Concentrations and 13C‐labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U‐13C]glucose to acetyl‐CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U‐13C]acetoacetate contributions were more than two‐fold higher. The concentration of GABA remained constant across groups; however, the 13C labeling of GABA was markedly increased in the KG group infused with [U‐13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet‐induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.

  相似文献   


19.
We have developed a model for the kinetics of acetoacetate (A) and β-OH-butyrate (B) in normal subjects. The model contains separate compartments for blood A, B, and acetone, as well as three exchange compartments. By using the model, the synthesis, utilization, and clearance rates of A and B were determined separately. We have compared the model with others that have been proposed for ketone body metabolism and have used the model to analyse studies undertaken in newly diagnosed diabetic patients and obese subjects (before and after a 2 week period of starvation). We found that in diabetic and obese individuals the synthesis of ketone bodies was higher than normal and that the fractional losses of A and B were reduced. The results suggest that ketosis develops as a result of high synthesis rates coupled with decreased fractional loss of ketone bodies. In each group the metabolism of B was altered more than A.  相似文献   

20.
Ketone-body metabolism was studied in overnight-fasted and in 10-days fasted dogs by a ketone-body tolerance test and by infusing [14C]ketone bodies. Clearance of ketone bodies from the blood was significantly decreased after 10 days of fasting. The utilization of ketone bodies was, however, significantly higher in the fasted animals due to the increase in blood ketone-body concentrations. It is concluded that the low level of ketone bodies, which is characteristic for fasting dogs, results from an efficient peripheral utilization. The contribution of ketone bodies to the daily energy requirement of the dog has been tentatively estimated to increase from 7% in the overnight-fasted state to 13% after 10 days of starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号