首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that partial inhibition of the cardiac myocyte Na(+)/K(+)-ATPase activates signal pathways that regulate myocyte growth and growth-related genes and that increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and reactive oxygen species (ROS) are two essential second messengers within these pathways. The aim of this work was to explore the relation between [Ca(2+)](i) and ROS. When myocytes were in a Ca(2+)-free medium, ouabain caused no change in [Ca(2+)](i), but it increased ROS as it did when the cells were in a Ca(2+)-containing medium. Ouabain-induced increase in ROS also occurred under conditions where there was little or no change in [Na(+)](i). Exposure of myocytes in Ca(2+)-free medium to monensin did not increase ROS. Increase in protein tyrosine phosphorylation, an early event induced by ouabain, was also independent of changes in [Ca(2+)](i) and [Na(+)](i). Ouabain-induced generation of ROS in myocytes was antagonized by genistein, a dominant negative Ras, and myxothiazol/diphenyleneiodonium, indicating a mitochondrial origin for the Ras-dependent ROS generation. These findings, along with our previous data, indicate that increases in [Ca(2+)](i) and ROS in cardiac myocytes are induced by two parallel pathways initiated at the plasma membrane: One being the ouabain-altered transient interactions of a fraction of the Na(+)/K(+)-ATPase with neighboring proteins (Src, growth factor receptors, adaptor proteins, and Ras) leading to ROS generation, and the other, inhibition of the transport function of another fraction of the Na(+)/K(+)-ATPase leading to rise in [Ca(2+)](i). Evidently, the gene regulatory effects of ouabain in cardiac myocytes require the downstream collaborations of ROS and [Ca(2+)](i).  相似文献   

2.
Jiann BP  Lu YC  Chang HT  Huang JK  Jan CR 《Life sciences》2002,70(26):3167-3178
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca(2+) indicator. Clomiphene at concentrations between 10-50 microM increased [Ca(2+)](i) in a concentration-dependent manner. The [Ca(2+)](i) signal was biphasic with an initial rise and a slow decay. Ca(2+) removal inhibited the Ca(2+) signal by 41%. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with clomiphene in Ca(2+)-free medium, confirming that clomiphene induced Ca(2+) entry. In Ca(2+)-free medium, pretreatment with 50 microM brefeldin A (to permeabilize the Golgi complex), 1 microM thapsigargin (to inhibit the endoplasmic reticulum Ca(2+) pump), and 2 microM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 microM clomiphene-induced store Ca(2+) release. Conversely, pretreatment with 50 microM clomiphene in Ca(2+)-free medium abolished the [Ca(2+)](i) increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 microM clomiphene-induced Ca(2+)release was unaltered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 microM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca(2+)](i) increases in PC3 cells by releasing store Ca(2+) from multiple stores in an phospholipase C-independent manner, and by activating Ca(2+) influx; and clomiphene was of mild cytotoxicity.  相似文献   

3.
Jan CR  Cheng JS  Roan CJ  Lee KC  Chen WC  Chou KJ  Tang KY  Wang JL 《Steroids》2001,66(6):505-510
The effect of the estrogen diethylstilbestrol (DES) on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was investigated, using the fluorescent dye fura-2 as a Ca(2+) indicator. DES (10-50 microM) evoked [Ca(2+)](i) increases in a concentration-dependent manner. Extracellular Ca(2+) removal inhibited 45 +/- 5% of the Ca(2+) response. In Ca(2+)-free medium, pretreatment with 50 microM DES abolished the [Ca(2+)](i) increases induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor); and pretreatment with CCCP and thapsigargin partly inhibited DES-induced [Ca(2+)](i) signals. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 50 microM DES in Ca(2+)-free medium, suggesting that DES may induce capacitative Ca(2+) entry. 17beta-Estradiol (2-20 microM) increased [Ca(2+)](i), but 100 microM diethylstilbestrol dipropionate had no effect. Pretreatment with the phospholipase C inhibitor U73122 (1 microM) to abolish inositol 1,4,5-trisphosphate formation inhibited 30% of DES-induced Ca(2+) release. DES (20 microM) also increased [Ca(2+)](i) in human normal hepatocytes and osteosarcoma cells. Cumulatively, this study shows that DES induced rapid and sustained [Ca(2+)](i) increases by releasing intracellular Ca(2+) and triggering extracellular Ca(2+) entry in renal tubular cells.  相似文献   

4.
Human spermatozoa stimulated with progesterone (a product of the cumulus and thus encountered by sperm prior to fertilization in vivo) apparently mobilize Ca(2+) and respond very differently according to the way in which the steroid is presented. A progesterone concentration ramp (0-3 microM) induces [Ca(2+)](i) oscillations (repetitive store mobilization) which modify flagellar beating, whereas bolus application of micromolar progesterone causes a single large transient (causing acrosome reaction) which is apparently dependent upon Ca(2+) influx. We have investigated Ca(2+)-mobilization and functional responses in human sperm exposed to 3 muM progesterone. The [Ca(2+)](i) response to progesterone was abolished by 4 min incubation in 0 Ca(2+) medium (2 mM EGTA) but in nominally Ca(2+)-free medium (no added Ca(2+); 0 EGTA) a smaller, slow response occurred. Single cell imaging showed a similar effect of nominally Ca(2+)-free medium and approximately 5% of cells generated a small transient even in the presence of EGTA. When cells were exposed to EGTA-containing saline (5 min) and then returned to nominally Ca(2+)-free medium before stimulation, the [Ca(2+)](i) transient was greatly delayed (approximately 50 s) and rise time was doubled in comparison to cells not subjected to EGTA pre-treatment. We conclude that mobilization of stored Ca(2+) contributes a 'slow' component to the progesterone-induced [Ca(2+)](i) transient and that incubation in EGTA-buffered saline is able rapidly to deplete this store. Analysis of flagellar activity induced by 3 muM progesterone showed an effect (modified beating) associated with the [Ca(2+)](i) transient, in >80% of cells bathed in nominally Ca(2+)-free medium. This was reduced greatly in cells subjected to 5 min EGTA pre-treatment. The store-mediated transient showed a pharmacological sensitivity similar to that of progesterone-induced [Ca(2+)](i) oscillations (consistent with filling of the store by an SPCA) suggesting that the transient induced by micromolar progesterone is a 'single shot' activation of the same store that generates Ca(2+) oscillations.  相似文献   

5.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

6.
The effect of propranolol on Ca(2+) signalling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Propranolol increased cytosolic free Ca(2+) levels ([Ca(2+)](i)) in a concentration-dependent manner between 0.1 and 1 mM. The response was partly inhibited by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with 0.2 mM propranolol partly inhibited the [Ca(2+)](i) rise induced by 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with thapsigargin abolished propranolol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 0.2 mM propranolol in Ca(2+)-free medium. Propranolol (0.2 mM) inhibited 25% of thapsigargin-induced capacitative Ca(2+) entry. Suppression of 1,4,5-trisphosphate (IP(3)) formation by 2 microM U73122, a phospholipase C inhibitor, did not alter 0.2 mM propranolol-induced internal Ca(2+) release. Propranolol (1 mM) also increased [Ca(2+)](i) in human neutrophils. Collectively, we have found that 0.2 mM propranolol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive Ca(2+) stores in an IP(3)-independent manner, followed by Ca(2+) influx from external space. Independently, propranolol was able to inhibit thapsigargin-induced capacitative Ca(2+) entry.  相似文献   

7.
The mechanism by which GnRH increases sperm-zona pellucida binding in humans was investigated in this study. We tested whether GnRH increases sperm-zona binding in Ca(2+)-free medium and in the presence of Ca(2+) channel antagonists. We also examined the GnRH effect on the intracellular free Ca(2+) concentration ([Ca(2+)](i)). Sperm treatment with GnRH increased sperm-zona binding 300% but only when Ca(2+) was present in the medium. In Ca(2+)-free medium or in the presence of 400 nM nifedipine, 80 microM diltiazem, or 50 microM verapamil, GnRH did not influence sperm-zona binding. GnRH increased the [Ca(2+)](i) in the sperm in a dose-dependent manner. The maximum effect was reached with 75 nM GnRH. The GnRH-induced increase in [Ca(2+)](i) was fast and transient, from a basal [Ca(2+)](i) of 413 +/- 22 nM to a peak value of 797 +/- 24 nM. The GnRH-induced increase in [Ca(2+)](i) was entirely due to a Ca(2+) influx from the extracellular medium because the increase in [Ca(2+)](i) was blocked by the Ca(2+) chelator EGTA and by the Ca(2+) channel antagonists nifedipine and diltiazem. These antagonists, however, were not able to inhibit the progesterone-activated Ca(2+) influx. On the contrary, T-type calcium channel antagonists pimozide and mibefradil did not affect GnRH-activated Ca(2+) influx but inhibited the progesterone-activated Ca(2+) influx. Finally, the GnRH-induced Ca(2+) influx was blocked by two specific GnRH antagonists, Ac-D-Nal(1)-Cl-D-Phe(2)-3-Pyr-D-Ala(3)-Arg(5)-D-Glu(AA)(6)-GnRH and Ac-(3,4)-dehydro-Pro(1),-p-fluoro-D-Phe(2), D-Trp(3,6)-GnRH. These results suggest that GnRH increases sperm-zona binding via an elevation of [Ca(2+)](i) through T-type, voltage-operated calcium channels.  相似文献   

8.
白藜芦醇降低大鼠心室肌细胞内游离钙浓度   总被引:4,自引:1,他引:3  
Liu Z  Zhang LP  Ma HJ  Wang C  Li M  Wang QS 《生理学报》2005,57(5):599-604
实验旨在研究白藜芦醇(resveratrol)对大鼠心室肌细胞内钙浓度(intracellular calcium concentratoin,[Ca2+]i)的影响.应用激光共聚焦显微镜技术记录心室肌细胞内的钙荧光强度.结果表明在正常台氏液和无钙台氏液中,白藜芦醇(15~60μmol/L)呈浓度依赖性地降低[Ca2+]i.蛋白酪氨酸磷酸酶抑制剂正钒酸钠(sodium orthovanadate,1.0 mmol/L)和L型Ca2+通道激动剂Bay K8644(10 μmol/L)可部分抑制正常台氏液中白藜芦醇的效应.但NO合酶阻断剂L-NAME(1.0 mmol/L)对白藜芦醇的作用无影响.白藜芦醇也能明显抑制无钙台氏液中由低浓度ryanodine(1.0 nmol/L)引起的[Ca2+]i增加.当细胞外液钙浓度由1 mmol/L增加到10 mmol/L而诱发心室肌细胞钙超载时,部分心室肌细胞产生可传播的钙波,白藜芦醇(60 μmol/L)可降低钙波的传播速度和持续时间,最终阻断钙波.结果提示,白藜芦醇能够降低心室肌细胞内游离钙浓度,此作用可能与其抑制电压依赖性Ca2+通道、酩氨酸激酶和肌浆网内钙释放有关.  相似文献   

9.
The effect of gossypol on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Gossypol evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 2 and 20 microM. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with gossypol nearly abolished the [Ca(2+)](i) increase induced by carbonylcyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, and thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with CCCP and thapsigargin only partly inhibited gossypol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 5 microM gossypol in Ca(2+)-free medium. This Ca(2+) entry was decreased by 25 microM econazole, 50 microM SKF96365 and 40 microM aristolochic acid (a phospholipase A(2) inhibitor). Pretreatment with aristolochic acid inhibited 5 microM gossypol-induced internal Ca(2+) release by 55%, but suppression of phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) had no effect. Gossypol (5 microM) also increased [Ca(2+)](i) in human bladder cancer cells and neutrophils. Collectively, we have found that gossypol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from external space.  相似文献   

10.
Cheek TR  Thorn P 《Cell calcium》2006,40(3):309-318
We have combined fluorimetric measurements of the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with the patch clamp technique, to investigate resting Ca(2+) entry in bovine adrenal chromaffin cells. Perfusion with nominally Ca(2+)-free medium resulted in a rapid, reversible decrease in [Ca(2+)](i), indicating a resting Ca(2+) permeability across the plasma membrane. Simultaneous whole-cell voltage-clamp showed a resting inward current that increased when extracellular Ca(2+) (Ca(2+)(o)) was lowered. This current had a reversal potential of around 0 mV and was carried by monovalent or divalent cations. In Na(+)-free extracellular medium there was a reduction in current amplitude upon removal of Ca(2+)(o), indicating the current can carry Ca(2+). The current was constitutively active and not enhanced by agents that promote Ca(2+)-store depletion such as thapsigargin. Extracellular La(3+) abolished the resting current, reduced resting [Ca(2+)](i) and inhibited basal secretion. Abolishment of resting Ca(2+) influx depleted the inositol 1,4,5-trisphosphate-sensitive Ca(2+) store without affecting the caffeine-sensitive Ca(2+) store. The results indicate the presence of a constitutively active nonselective cation conductance, permeable to both monovalent and divalent cations, that can regulate [Ca(2+)](i), the repletion state of the intracellular Ca(2+) store and the secretory response in resting cells.  相似文献   

11.
内皮素-1预处理对培养乳鼠心肌细胞低氧损伤的保护作用   总被引:13,自引:0,他引:13  
Pan YX  Lin L  Yuan WJ  Tang CS 《生理学报》2003,55(2):171-176
实验观察了 0 0 1- 1nmol/L内皮素 1(ET 1)预处理对低氧孵育 ( 3 %O2 5 %CO2 ,12h)的培养乳鼠心肌细胞乳酸脱氢酶 (LDH)释放量、培养液上清超氧化物歧化酶 (SOD)活性以及丙二醛 (MDA)含量的影响。用Fluo 3 /AM负载培养的心肌细胞 ,在激光扫描共聚焦显微镜下监测急性低氧的心肌细胞 [Ca2 +]i 的变化和ET 1预处理对低氧所致 [Ca2 +]i 变化的影响。结果如下 :( 1)心肌细胞低氧孵育 12h后 ,培养液上清LDH活力和MDA含量较常氧对照组明显升高 ,分别为 43 3 3± 1 2 1U/Lvs 19 3 3± 1 0 3U/L和 1 71± 0 0 2nmol/Lvs 0 91± 0 0 3nmol/L (P<0 0 1) ,SOD活性为 16 93± 1 11U/ml明显低于常氧对照组的 3 3 48± 1 15U/ml (P <0 0 1) ;0 0 1- 1nmol/LET 1预处理呈浓度依赖性抑制低氧培养心肌细胞LDH释放 ,减少培养液上清MDA含量、提高SOD活性 (P <0 0 1)。 ( 2 )低氧灌流后 2 9± 1 5s (n =2 3 )心肌细胞自发性钙瞬变完全终止 ,[Ca2 +]i 升高了 10 7± 13 2 % (P <0 0 0 1) ;0 0 1- 1nmol/LET 1能明显加快心肌细胞钙瞬变的频率 (P <0 0 1) ;ET 1预处理后低氧所致钙瞬变终止的时间较单纯低氧组明显推迟 ,[Ca2 +]i过度升高被明显减轻 (P <0 0 1)。上述结果表明 ,0 0 1- 1nmol/LET 1预处理可减轻培  相似文献   

12.
Stimulation of lymphocytes by specific antigens is followed by the activation of different signal transduction mechanisms, such as alterations in the cytoplasmic levels of Ca(2+), H(+) and variations in membrane potential. To study interrelationships among these parameters, changes in pHi and Ca(2+) were measured with the fluorescent probes BCECF and Fura-2 in freshly isolated blood human lymphocytes. Moreover, membrane potential qualitative alterations were recorded with the fluorescent dye bis-oxonol. In a bicarbonate-free medium, cell alkalinization with NH(4)Cl slightly decreased intracellular Ca(2+) concentration ([Ca(2+)](i)) due to efflux of Ca(2+) from the cell. In contrast, an elevation of pHi induced with 4-AP increased [Ca(2+)](i), either in the presence or absence of external Ca(2+). The increase in Ca(2+)-free medium is likely to be due to Ca(2+) release from thapsigargin and caffeine-independent intracellular stores. Both 4-AP or NH(4)Cl induced a plasma membrane depolarisation, although with different kinetics. The ionosphere ionomycin increased pHi, Ca(2+) levels and also induced membrane depolarisation. Together, these observations demonstrate a lack of correlation between the magnitude of changes in pHi and Ca(2+).  相似文献   

13.
胍丁胺对大鼠心室肌细胞内游离钙浓度的影响   总被引:1,自引:1,他引:1  
Li Q  Shang ZL  Yin JX  Wang YH  He RR 《生理学报》2002,54(6):467-472
本研究旨在观察胍丁胺 (agmatine ,Agm)对分离大鼠心室肌细胞内游离钙浓度 ( [Ca2 +]i)的影响。用酶解方法分离大鼠心室肌细胞 ,用Fluo 3 AM负载 ,然后用激光共聚焦法测定单个心室肌细胞 [Ca2 +]i 的荧光强度 (fluorescenceintensity ,FI) ,结果以FI或相对荧光强度 (F/F0 % )表示。实验结果表明 ,在正常台氏液 (含钙 1 0mmol/L)和无钙台氏液中 ,单个大鼠心室肌细胞的荧光密度分别为 12 8 8± 13 8和 119 6± 13 6,两者无差异。Agm 0 1、1和 10mmol/L浓度依赖性地显著降低细胞的钙浓度 ;在正常台氏液中加入EGTA 3mmol/L ,Agm同样降低细胞的钙浓度。KCl 60mmol/L ,PE 3 0 μmol/L ,和Bay K 864 410 μmol/L均升高心室肌细胞的[Ca2 +]i。Agm同样降低高浓度KCl、Bay K 864 4和PE诱发的心室肌细胞 [Ca2 +]i 升高。当细胞外液钙浓度由 1mmol/L增加到 10mmol/L时 ,诱发心室肌细胞钙超载 ,同时部分心室肌细胞产生可传播的钙波 (Ca2 +wave) ,Agm 1mmol/L降低钙波的传播速度和持续时间 ,最终阻断钙波。以上结果提示 ,Agm对心室肌细胞的胞浆[Ca2 +]i具有抑制作用 ,此作用通过阻断电压依赖性钙通道而实现 ;并可能与抑制大鼠心室肌细胞内钙释放有关  相似文献   

14.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and cell viability in OC2 human oral cancer cells. [Ca(2+)](i) and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). The tamoxifen-induced Ca(2+) influx was sensitive to blockade of L-type Ca(2+) channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca(2+)-free medium, after pretreatment with 1 muM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), tamoxifen-induced [Ca(2+)](i) rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca(2+)](i) rises. Inhibition of phospholipase C with 2 microM U73122 did not change tamoxifen-induced [Ca(2+)](i) rises. At concentrations between 10 and 50 microM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 microM tamoxifen was not reversed by prechelating cytosolic Ca(2+) with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca(2+)](i) rises, in a nongenomic manner, by causing Ca(2+) release from the endoplasmic reticulum, and Ca(2+) influx from L-type Ca(2+) channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca(2+)](i) rise.  相似文献   

15.
The parotid glands are highly active secretory systems subjected to continuous stress, which in turn, can lead to several pathophysiological conditions. Damage of the parotid glands are caused by radical oxygen species (ROS) as by-products of oxygen metabolism. This study investigated the effect of hydrogen peroxide (H(2)O(2)) on Carbachol (CCh)-evoked secretory responses and caspase-3 activity in the isolated rat parotid gland to understand the role of oxidative stress on the function of the gland. Amylase secretion, cytosolic calcium concentration ([Ca(2+)](i)) and caspase-3 activity in parotid gland tissue were measured using fluorimetric methods. H(2)O(2) had little or no effect on amylase secretion compared to basal level. Combining H(2)O(2) with CCh resulted in an attenuation of the CCh-evoked amylase secretion compared to the effect of CCh alone. CCh can evoke a large increase in [Ca(2+)](i) comprising an initial peak followed by a plateau. In a Ca(2+)-free medium containing 1 mM EGTA, CCh evoked only the initial peak of [Ca(2+)](i). H(2)O(2) alone evoked a gradual and dose-dependent increase in [Ca(2+)](i). Combining H(2)O(2) with CCh resulted in a decrease in [Ca(2+)](i) compared to the effect of CCh alone. In a Ca(2+)-free medium, H(2)O(2) still evoked a small increase in [Ca(2+)](i), but this response was less compared to the results obtained with H(2)O(2) in normal [Ca(2+)](0). Combining H(2)O(2) with CCh resulted in only a small transient increase in [Ca(2+)](i). Following CCh stimulation, H(2)O(2) application resulted in a large increase in [Ca(2+)](i) in normal [Ca(2+)](0). This effect of H(2)O(2) was partially abolished in a nominally free Calcium medium containing EGTA. H(2)O(2) can stimulate caspase-3 activity in parotid gland tissue. Similar response was obtained with betulinic acid and thapsigargin (TPS) on caspase-3 activity compared to basal. The results have demonstrated that like CCh, H(2)O(2) can also mobilise Ca(2+) from intracellular stores and facilitate its influx into the cell from extracellular medium. This effect of H(2)O(2) may be due to its activity to induce apoptosis in the parotid gland, since H(2)O(2) can stimulate the activity of caspase-3, a marker of cellular apoptosis.  相似文献   

16.
Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.  相似文献   

17.
Capsazepine is thought to be a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on different cell types is unclear. In human MG63 osteosarcoma cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 100 microM. Capsazepine-induced [Ca(2+)](i) rise was partly reduced by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was composed of extracellular Ca(2+) influx and intracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of capsazepine on [Ca(2+)](i) was inhibited by 75%. Conversely, pretreatment with capsazepine to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. Overnight treatment with 1-100 microM capsazepine inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, capsazepine increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Capsazepine may be mildly cytotoxic.  相似文献   

18.
Chao YY  Jan CR 《Life sciences》2004,74(7):923-933
In canine renal tubular cells, the effect of Y-24180, a presumed specific platelet activating factor (PAF) receptor antagonist, on intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by using fura-2 as a Ca(2+)-sensitive fluorescent probe. Y-24180 (0.1-10 microM) caused a rapid and sustained [Ca(2+)](i) rise in a concentration-dependent manner. The [Ca(2+)](i) rise was prevented by 30% by removal of extracellular Ca(2+), but was not changed by dihydropyridines, verapamil and diltiazem. Y-24180-induced Ca(2+) influx was confirmed by Mn(2+)-influx induced quench of fura-2 fluorescence. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of 5 microM Y-24180 on [Ca(2+)](i) was abolished; conversely, depletion of Ca(2+) stores with 5 microM Y-24180 abolished thapsigargin-induced [Ca(2+)](i) rise. U73122, an inhibitor of phoispholipase C, inhibited ATP-, but not Y-24180-induced [Ca(2+)](i) rise. Overnight treatment with Y-24180 did not alter cell proliferation rate. Collectively, these results suggest that Y-24180 acts as a potent, but not cytotoxic, Ca(2+) mobilizer in renal tubular cells, by stimulating both extracellular Ca(2+) influx and intracellular Ca(2+) release. Since alterations in Ca(2+) movement may interfere many cellular signaling processes unrelated to modulation of PAF receptors, caution must be applied in using this chemical as a selective PAF receptor antagonist.  相似文献   

19.
Lau KL  Kong SK  Ko WH  Kwan HY  Huang Y  Yao X 《Life sciences》2003,73(16):2019-2028
Calcium is a crucial regulator of many physiological processes such as cell growth, division, differentiation, cell death and apoptosis. In this study, we examined the effect of cGMP on agonist-induced [Ca(2+)](i) transient in isolated rat aortic endothelial cells. 100 microM ATP was applied to the cells bathed in a Ca(2+)-free physiological solution to induce a [Ca(2+)](i) transient that was caused by Ca(2+) release from intracellular stores. cGMP, which was applied after [Ca(2+)](i) reached its peak level, accelerated the falling phase of [Ca(2+)](i) transient. Pre-treatment of the cells with CPA abolished the accelerating effect of cGMP on the falling phase of [Ca(2+)](i) transient. The effect of cGMP was reversed by KT5823, a highly specific inhibitor of protein kinase G. Taken together, these data suggest that cGMP may reduce [Ca(2+)](i) level by promoting Ca(2+) uptake through sarcoplasmic/endoplasmic reticulum ATPase and that the effect of cGMP may be mediated by protein kinase G.  相似文献   

20.
Chronic exercise enhances endothelium-dependent vasodilating responses. To investigate whether this is due to a change in endothelial Ca(2+) signaling, we examined intracellular Ca(2+) concentration ([Ca(2+)](i)) level in rat aortic endothelium in response to acetylcholine (ACh) or ATP. Four-week-old male Wistar rats were divided into control and exercise groups. The exercised animals ran on a treadmill at a moderate intensity for 60 min/day, 5 day/wk, for 10 wk. Rat aortas were then excised and loaded with fura 2. After the aortas were mounted on a flow chamber, these specimens were observed under an epifluorescence microscope equipped with ratio-imaging capability. Our results showed that 1) chronic exercise increased both ACh- and ATP-induced [Ca(2+)](i) responses; 2) ACh induced heterogeneous [Ca(2+)](i) elevation in individual endothelial cells; and 3) the exercise effect on ACh-evoked endothelial [Ca(2+)](i) elevation was inhibited by the Ca(2+) influx blocker SKF-96365, by a Ca(2+)-free buffer, or by high concentrations of extracellular K(+). We conclude that chronic exercise increases ACh-induced [Ca(2+)](i) elevation in rat aortic endothelium in situ, possibly by facilitating Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号