首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn–canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn–canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.  相似文献   

2.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

3.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

4.
To measure the effects of dietary n-3 polyunsaturated fatty acid (PUFA) supplementation on the reproductive capacity of adult male turkeys in industrial flocks, the males of 22 commercial farms were fed either a standard diet or a fish oil diet enriched in n-3 PUFAs. The fatty acid composition of the spermatozoa and reproductive performance were measured throughout the reproductive period. The fish oil diet very effectively increased the percentage of n-3 fatty acids (FA) (22:5n-3 and 22:6n-3) in spermatozoa and correspondingly decreased the percentage of n-6 PUFAs (20:4-6 and 22:4n-6): the n-3/n-6 ratio in spermatozoa fatty acids were 0.04-0.07 with the standard diet and 0.32-0.4 with the fish oil diet. These changes did not affect the spermatozoa content of n-9 PUFAs, particularly of 22:3n-9 which is abundant in turkey spermatozoa (9-12% of the total fatty acids). The supplementation was effective in the middle as at the end of the reproductive period. The reproductive capacity of males was modified by the diet and the positive effect of the n-3 supplemented diet increased with age (increase in hatching rates of nearly 2 points at 48-58 weeks for males fed fish oil diet). These results indicate that an increase in the dietary ratio of n-3/n-6 PUFAs is valuable to sustain the reproductive capacity of male turkeys especially when they are getting older.  相似文献   

5.
In pigs fed a standard pig mash the contents of polyunsaturated fatty acids (PUFAs) of both the n-6 and n-3 series were significantly higher in the dark red mm adductores compared to the light coloured m longissimus lumborum. Perirenal fat had a higher concentration of saturated fatty acids (14:0,16:0, 18:0) than backfat, and a lower concentration of monounsaturated fatty acids, such as 16:ln-7 and 18:ln-9. Daily supplementation of 50 ml cod liver oil, rich in n-3 PUFAs, during the fourth and third week before slaughter led to a 1.4 to 1.7 times increase in the contents of n-3 PUFAs in muscles and fat depots. There was no difference between the incorporation of n-3 PUFAs in dark and light muscles. Perirenal fat contained more 20:5n-3 (EPA) and 22:6n-3 (DHA), but less 20:ln-9 (eicosenoic acid) than the backfat, after cod liver oil supplementation rich in these 3 fatty acids. Supplementation of cod liver oil reduced the n-6/n-3 fatty acid ratio in all anatomical locations examined.  相似文献   

6.
The role played by membrane lipid environment on cardiac function remains poorly defined. The polyunsaturated fatty acid profile of myocardial phospholipids could be of utmost importance in the regulation of key-enzyme activities. This study was undertaken to determine whether selective incorporation of n-6 or n-3 fatty acids in membrane phospholipids might influence cardiac mechanical performances and metabolism. For 8 wk, male weaning Wistar rats were fed a semi-purified diet containing either 10% sunflower seed oil (72% C18:2 n-6) or 10% linseed oil (54% C18:3 n-3) as the sole source of lipids. The hearts were then removed and perfused according to working mode with a Krebs-Henseleit buffer containing glucose (11 mM) and insulin (10 Ul/l). Cardiac rate, coronary and aortic flows and ejection fraction were monitored after 30 min of perfusion. Myocardial metabolism was estimated by evaluating the intracellular fate of 1-14C palmitate. Sunflower seed oil and linseed oil feeding did not modify either coronary or aortic flow, which suggests that cardiac mechanical work was not affected by the diets. Conversely, cardiac rate was significantly decreased (-18%; P less than 0.01) when rats were fed the n-3 polyunsaturated fatty acid rich diet. Radioanalysis of the myocardial metabolism suggested that replacing n-6 polyunsaturated fatty acids by n-3 polyunsaturated fatty acids: i) did not alter palmitate uptake; ii) prolonged palmitate incorporation into cardiac triglycerides; iii) reduced beta-oxidation of palmitic acid. These results support the assumption that dietary fatty acids, particularly n-6 and n-3 fatty acids, play an important role in the regulation of cardiac mechanical and metabolic activity.  相似文献   

7.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

8.
This study has been undertaken to determine the effect of a diet enriched with olive oil (OO) and high-oleic sunflower oil (HOSO) on fatty acid composition of erythrocyte membrane phospholipids and blood pressure in healthy women. OO and HOSO were used as natural sources of monounsaturated fatty acids (MUFAs) in a random-order sequence over two 4-week periods with a 4-week washout period between both MUFA diets. HOSO diet resulted in significant increases in oleic [(18:1n-9) 8.6%, P < 0.001], eicosenoic [(20:1n-9) 33.3%, P < 0.05], arachidonic [(20:4n-6) 6.2%, P < 0.05], and docosapentaenoic [(22:5n-6) 56.0%, P < 0.001] acids, whereas OO diet besides increased the content of stearic acid [(18:0) 13.6%, P < 0.01] and long-chain polyunsaturated fatty acids (PUFAs) of the n-3 family (22:5n-3 and 22:6n-3), when compared with the baseline [a diet high in saturated fatty acids (SFAs) and low in MUFAs]. In contrast, there was a significant decrease in linoleic acid [(18:2n-6) 21.8%, P < 0.001] for both MUFA diets. Consistent with these data, dietary intake of OO significantly raised total PUFAs (7.2%, P < 0.05), the n-3 fatty acids (22.2%, P < 0.01) and the PUFAs/SFAs ratio (9.3%, P < 0.01), as well as decreased the ratio of cholesterol to phospholipids (26,1%, P < 0.001) versus HOSO-based diet. Interestingly, dietary OO, but not HOSO, was able to significantly reduce the systolic (3%, P < 0.05) and diastolic (4%, P < 0.05) blood pressures. Although both vegetable oils provided a similar content of MUFAs (mainly oleic acid), our findings rather indicate that OO has important benefits to modulate the fatty acid composition of membranes and the mechanisms involved in the regulation of blood pressure in human.  相似文献   

9.
This study describes the effect of substituting dietary linoleic acid (18:2 n-6) with alpha-linolenic acid (18:3 n-3) on sucrose-induced insulin resistance (IR). Wistar NIN male weanling rats were fed casein based diet containing 22 energy percent (en%) fat with approximately 6, 9 and 7 en% saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) respectively for 3 months. IR was induced by replacing starch (ST) with sucrose (SU). Blends of groundnut, palmolein, and linseed oil in different proportions furnished the following levels of 18:3 n-3 (g/100 g diet) and 18:2 n-6/18:3 n-3 ratios respectively: ST-220 (0.014, 220), SU-220 (0.014, 220), SU-50 (0.06, 50), SU-10 (0.27, 10) and SU-2 (1.1, 2). The results showed IR in the sucrose fed group (SU-220) as evidenced by increase in fasting plasma insulin and area under the curve (AUC) of insulin in response to oral glucose load. In SU-220, the increase in adipocyte plasma membrane cholesterol/phospholipid ratio was associated with a decrease in fluidity, insulin stimulated glucose transport, antilipolytic effect of insulin and increase in basal and norepinephrine stimulated lipolysis in adipocytes. In SU-50, sucrose induced alterations in adipocyte lipolysis and antilipolysis were normalized. However, in SU-2, partial corrections in plasma insulin, AUC of insulin and adipocyte insulin stimulated glucose transport were observed. Further, plasma triglycerides and cholesterol decreased in SU-2. In diaphragm phospholipids, the observed dose dependent increase in long chain (LC) n-3 PUFA was associated with a decrease in LC-n-6 PUFA but insulin stimulated glucose transport increased only in SU-2. Thus, this study shows that the substitution of one-third of dietary 18:2 n-6 with 18:3 n-3 (SU-2) results in lowered blood lipid levels and increases peripheral insulin sensitivity, possibly due to the resulting high LCn-3 PUFA levels in target tissues of insulin action. These findings suggest a role for 18:3 n-3 in the prevention of insulin resistant states. The current recommendation to increase 18:3 n-3 intake for reducing cardiovascular risk may also be beneficial for preventing IR in humans.  相似文献   

10.
This study describes the effect of substituting dietary linoleic acid (18:2 n-6) with α-linolenic acid (18:3 n-3) on sucrose-induced insulin resistance (IR). Wistar NIN male weanling rats were fed casein based diet containing 22 energy percent (en%) fat with ~6, 9 and 7 en% saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) respectively for 3 months. IR was induced by replacing starch (ST) with sucrose (SU). Blends of groundnut, palmolein, and linseed oil in different proportions furnished the following levels of 18:3 n-3 (g/100 g diet) and 18:2 n-6/18:3 n-3 ratios respectively: ST-220 (0.014, 220), SU-220 (0.014, 220), SU-50 (0.06, 50), SU-10 (0.27, 10) and SU-2 (1.1, 2). The results showed IR in the sucrose fed group (SU-220) as evidenced by increase in fasting plasma insulin and area under the curve (AUC) of insulin in response to oral glucose load. In SU-220, the increase in adipocyte plasma membrane cholesterol/phospholipid ratio was associated with a decrease in fluidity, insulin stimulated glucose transport, antilipolytic effect of insulin and increase in basal and norepinephrine stimulated lipolysis in adipocytes. In SU-50, sucrose induced alterations in adipocyte lipolysis and antilipolysis were normalized. However, in SU-2, partial corrections in plasma insulin, AUC of insulin and adipocyte insulin stimulated glucose transport were observed. Further, plasma triglycerides and cholesterol decreased in SU-2. In diaphragm phospholipids, the observed dose dependent increase in long chain (LC) n-3 PUFA was associated with a decrease in LC-n-6 PUFA but insulin stimulated glucose transport increased only in SU-2. Thus, this study shows that the substitution of one-third of dietary 18:2 n-6 with 18:3 n-3 (SU-2) results in lowered blood lipid levels and increases peripheral insulin sensitivity, possibly due to the resulting high LCn-3 PUFA levels in target tissues of insulin action. These findings suggest a role for 18:3 n-3 in the prevention of insulin resistant states. The current recommendation to increase 18:3 n-3 intake for reducing cardiovascular risk may also be beneficial for preventing IR in humans.  相似文献   

11.
12.
《Small Ruminant Research》2010,89(2-3):135-144
The potential to modify milk fatty acid composition and milk production by dietary administration of marine oils rich in n-3 PUFAs in goats diets is reviewed. Moreover animal and human health implications are considered. Role of nutrition in dairy goats for enhancing content of CLA in milk fat is also discussed. At last, rumen protected choline supplementation is evaluated to improve productive performance and metabolic health. While the effects of n-3 PUFAs administration on goat productive performance seem to depend on many factors, fish oil administration has been extensively shown to lower average concentration of C18:0 and saturated fatty acids, with a relative increase of C16:1, C18:3 n-3 and very long-chain n-3 PUFAs. Positive results have been evidenced in animals health following administration of EPA and DHA from fish oil, leading to increased phagocytic activity with no effects on extracellular ROS production in incubated goats cells. The nutritional and health properties of goat's milk could be further improved by increasing the content of CLA in milk fat. Provision of PUFAs from fresh pasture and plant lipids, mainly C18:2 n-6 and C18-3 n3 which serve as precursor for trans C18:1 formation in the rumen, have proved to enhance content of CLA in goat milk fat. Marine oils rich in n-3 PUFAs have been shown to be very effective at increasing CLA content in bovine milk, but very scarce data are available on dairy goats.Rumen protected choline has been show to increase productive performance, particularly milk production, fat percentage, and fat and protein yield without detrimental effects on methyl groups, thus reducing BHBA plasma content and hepatocellular lipid accumulation around transition.However the magnitude of the production response seems to be affected by the composition of the diet, and other factors as already reported for n-3 PUFAs administration.  相似文献   

13.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

14.
The effects of different dietary fat intake on the lipid composition and enzyme behaviour of sarcolemmal (Na+ + K+)ATPase and sarcoplasmic reticulum Ca2+-ATPase from rat heart were investigated. Rat diets were supplemented with either sunflower seed oil (unsatd./satd. 5.6) or sheep kidney fat (unsatd./satd. 0.8). Significant changes in the phospholipid fatty acid composition were observed in both membranes after 9 weeks dietary lipid treatment. For both membranes, the total saturated/unsaturated fatty acid levels were unaffected by the dietary lipid treatment, however the proportions of the major unsaturated fatty acids were altered. Animals fed the sunflower seed oil diet exhibited an increase in n-6 fatty acids, including linoleic (18:2(n-6] and arachidonic (20:4(n-6] while the sheep kidney fat dietary rats were higher in n-3 fatty acids, principally docosahexaenoic (22:6), with the net result being a higher n-6/n-3 ratio in the sunflower seed oil group compared to sheep kidney fat dietary animals. Fluorescence polarization indicated that the fluidity of sarcoplasmic reticular membrane was greater than that of sarcolemmal membrane, with a dietary lipid-induced decrease in fluidity being observed in the sarcoplasmic reticular membrane from sheep kidney fat dietary animals. Despite these significant changes in membrane composition and physical properties, neither the specific activity nor the temperature-activity relationship (Arrhenius profile) of the associated ATPases were altered. These results suggest that with regard to the parameters measured in this study, the two ion-transporting ATPases are not modulated by changes which occur in the membrane lipid composition as a result of the diet.  相似文献   

15.
Fatty acids from total lipids and polar lipids in cultured rainbow trout (Oncorhynchus mykiss) raised in seawater (SW) and freshwater (FW) were identified and quantified from the muscle samples in January, April, and July. The highest total lipid and polar lipid amounts were found in April. July contents of total lipids were low, but percent of the polyunsaturated fatty acids (PUFAs) was high in SW and FW environment (particularly n-3 PUFAs). Variety of 17 fatty acids was identified by GC-FID after transmethylation. The predominant fatty acids in rainbow trout from SW and FW were: docosahexaenoic acid among n-3 PUFAs, palmitic acid among saturated fatty acids (SFAs), and oleic acid among monounsaturated fatty acids (MUFAs). Appreciably higher n-3/n-6 ratio was found in total lipids in April (6.40, FW fish) and in polar lipids in July (18.76; SW fish). High n-3/n-6 ratio in total lipids and polar lipids of rainbow trout from SW and FW, besides beneficial n-3/n-6 ratio in the commercial fish food, could be characteristic for the local environmental conditions (Croatia).  相似文献   

16.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

17.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

18.
Conjugated linoleic acids (CLAs) and n-3 polyunsaturated fatty acids (PUFAs) improve insulin sensitivity in insulin-resistant rodents. However, the effects of these fatty acids on insulin secretion are not known but are of importance to completely understand their influence on glucose homeostasis. We therefore examined islet function after dietary supplementation consisting of 1% CLAs in combination with 1% n-3 enriched PUFAs for 12 wk to mice on a normal diet and to insulin-resistant mice fed a high-fat diet (58% fat). In the mice fed a normal diet, CLA/PUFA supplementation resulted in insulin resistance associated with low plasma adiponectin levels and low body fat content. Intravenous and oral glucose tolerance tests revealed a marked increase in insulin secretion, which nevertheless was insufficient to counteract the insulin resistance, resulting in glucose intolerance. In freshly isolated islets from mice fed the normal diet, both basal and glucose-stimulated insulin secretion were adaptively augmented by CLA/PUFA, and at a high glucose concentration this was accompanied by elevated glucose oxidation. In contrast, in high-fat-fed mice, CLA/PUFA did not significantly affect insulin secretion, insulin resistance, or glucose tolerance. It is concluded that dietary supplementation of CLA/PUFA in mice fed the normal diet augments insulin secretion, partly because of increased islet glucose oxidation, but that this augmentation is insufficient to counterbalance the induction of insulin resistance, resulting in glucose intolerance. Furthermore, the high-fat diet partly prevents the deleterious effects of CLA/PUFA, but this dietary supplementation was not able to counteract high-fat-diet-induced insulin resistance.  相似文献   

19.
The fatty acid profile of vegetable oils (VOs), together with the poor ability of marine fish to convert polyunsaturated fatty acids (PUFA) to highly unsaturated fatty acids (HUFA), lead to important changes in the nutritional value of farmed fish fed VO, which include increased fat and 18:2n-6 and reduced n-3 HUFA. Echium oil (EO) has a good n-3/n-6 balance as well as an interesting profile with its high content of unusual fatty acids (SDA, 18:4n-3 and GLA, 18:3n-6) that are of increasing pharmacological interest. The effects of substituting 50 % of dietary fish oil (FO) by EO on gilthead seabream (Sparus aurata L.) enterocyte and hepatocyte lipid metabolism were studied. After 4 months of feeding, cell viability, total lipid contents and lipid class compositions were not affected by EO. The cells clearly reflected the fatty acid profile of the EO showing increased SDA, GLA and its elongation product 20:3n-6, and only minorly decreased n-3 HUFA compared to other VO. Metabolism of [1-14C]18:2n-6 and [1-14C]18:3n-3 was also unaffected by EO in terms of total uptake, incorporation, β-oxidation and elongation–desaturation activities.  相似文献   

20.
Milk fat is the major source of energy for breastfed infants; it also supplies polyunsaturated fatty acids (PUFAs) essential for the development of brain, retina, and other organs. Maternal nutritional status is critical for the newborn, and little information exists regarding the PUFA status of vulnerable populations living in Southern regions. We studied the relationship between maternal nourishment and milk fatty acid composition. Mother nutritional status (normal, overweight or obese) was estimated on the body mass index. Milk protein, total lipid, and fatty acid composition were determined. Milk protein was not affected by mother's nutritional status. In obese mothers an increase in lipid content, linoleic acid, total n-6 and total PUFAs was observed comparing to the other groups. Disregarding the nutritional status, the ratio n-6/n-3 fatty acids was very high and the 22:6n-3 content was very low, when compared with those of mothers from other countries. This finding led us to urge Public Health officers to promote changes in the dietary habits of nursing women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号