首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fusarium ear rot caused by Fusarium verticillioides is a prevalent disease in maize which can severely reduce grain yields and quality. Identification of stable quantitative trait loci (QTL) for resistance to Fusarium ear rot is a basic prerequisite for understanding the genetic mechanism of resistance and for the use of marker-assisted selection. In this study, two hundred and ten F 2:3 families were developed from a cross between resistant inbred line BT-1 and susceptible inbred line Xi502, and were genotyped with 178 simple sequence repeat markers. The resistance of each line was evaluated in two environments by artificial inoculation using the nail-punch method. The resistance QTL were detected using the composite interval mapping method. Three QTL were detected on chromosomes 4, 5 and 10. Of them, the QTL on chromosome 4 (bin 4.05/06) had the largest resistance to Fusarium ear rot, and could explain 17.95?% of the phenotypic variation. For further verification of the QTL effect, we developed near-isogenic lines (NILs) carrying the QTL region on chromosome 4 using parental line Xi502 as the recurrent parent. In the NIL background, this QTL can increase the resistance by 33.7?C35.2?% if the resistance region is homozygous, and by 17.8?C26.5?% if the resistance region contains the heterozygous allele. The stable and significant resistance effect of the QTL on chromosome 4 lays the foundation for further marker-assisted selection and map-based cloning in maize.  相似文献   

3.
The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.  相似文献   

4.
A major QTL for resistance to Gibberella stalk rot in maize   总被引:1,自引:0,他引:1  
Fusarium graminearum Schwabe, the conidial form of Gibberella zeae, is the causal fungal pathogen responsible for Gibberella stalk rot of maize. Using a BC1F1 backcross mapping population derived from a cross between ‘1145’ (donor parent, completely resistant) and ‘Y331’ (recurrent parent, highly susceptible), two quantitative trait loci (QTLs), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot have been detected. The major QTL qRfg1 was further confirmed in the double haploid, F2, BC2F1, and BC3F1 populations. Within a qRfg1 confidence interval, single/low-copy bacterial artificial chromosome sequences, anchored expressed sequence tags, and insertion/deletion polymorphisms, were exploited to develop 59 markers to saturate the qRfg1 region. A step by step narrowing-down strategy was adopted to pursue fine mapping of the qRfg1 locus. Recombinants within the qRfg1 region, screened from each backcross generation, were backcrossed to ‘Y331’ to produce the next backcross progenies. These progenies were individually genotyped and evaluated for resistance to Gibberella stalk rot. Significant (or no significant) difference in resistance reactions between homozygous and heterozygous genotypes in backcross progeny suggested presence (or absence) of qRfg1 in ‘1145’ donor fragments. The phenotypes were compared to sizes of donor fragments among recombinants to delimit the qRfg1 region. Sequential fine mapping of BC4F1 to BC6F1 generations enabled us to progressively refine the qRfg1 locus to a ~500-kb interval flanked by the markers SSR334 and SSR58. Meanwhile, resistance of qRfg1 to Gibberella stalk rot was also investigated in BC3F1 to BC6F1 generations. Once introgressed into the ‘Y331’ genome, the qRfg1 locus could steadily enhance the frequency of resistant plants by 32–43%. Hence, the qRfg1 locus was capable of improving maize resistance to Gibberella stalk rot.  相似文献   

5.
6.
Ineffective screening methods and low levels of disease resistance have hampered genetic analysis of maize (Zea mays L.) resistance to disease caused by maize chlorotic dwarf virus (MCDV). Progeny from a cross between the highly resistant maize inbred line Oh1VI and the susceptible inbred line Va35 were evaluated for MCDV symptoms after multiple virus inoculations, using the viral vector Graminella nigrifrons. Symptom severity scores from three rating dates were used to calculate area under the disease progress curve (AUDPC) scores for vein banding, leaf twist and tear, and whorl chlorosis. AUDPC scores for the F2 population indicated that MCDV resistance was quantitatively inherited. Genotypic and phenotypic analyses of 314 F2 individuals were compared using composite interval mapping (CIM) and analysis of variance. CIM identified two major quantitative trait loci (QTL) on chromosomes 3 and 10 and two minor QTL on chromosomes 4 and 6. Resistance was additive, with alleles from Oh1VI at the loci on chromosomes 3 and 10 contributing equally to resistance.  相似文献   

7.
Breeding for resistance to gray leaf spot, caused by Cercospora zeae-maydis (Cz) is paramount for many maize environments, in particular under warm and humid growing conditions. In this study, we mapped and characterized quantitative trait loci (QTL) involved in the resistance of maize against Cz. We confirmed the impact of the QTL on disease severity using near-isogenic lines (NILs), and estimated their effects on three major agronomic traits using their respective near isogenic hybrids (NIHs), which we obtained by crossing the NILs with an inbred from a complementary heterotic pool. We further validated three of the four QTL that were mapped using the Multiple Interval Mapping approach and showed LOD values >2.5. NILs genotype included all combinations between favorable alleles of the two QTL located in chromosome 1 (Q 1 in bin 1.05 and Q 2 in bin 1.07), and the allele in chromosome 3 (Q 3 in bin 3.07). Each of the three QTL separately significantly reduced the severity of Cz. However, we found an unfavorable epistatic interaction between Q 1 and Q 2: presence of the favorable allele at one of the QTL allele effectively nullified the effect of the favorable allele at the other. In contrast, the interaction between Q 2 and Q 3 was additive, promoting the reduction of the severity to a greater extent than the sum of their individual effects. When evaluating the NIH we found significant individual effects for Q 1 and Q 3 on gray leaf spot severity, for Q 2 on stalk lodging and grain yield, and for Q 3 on grain moisture and stalk lodging. We detected significant epitasis between Q 1 and Q 2 for grain moisture and between Q 1 and Q 3 for stalk lodging. These results suggest that the combination of QTL impacts the effectiveness of marker-assisted selection procedures in commercial product development programs.  相似文献   

8.
Ear weight is one of the most important agronomic traits considered necessary in maize (Zea mays L.) breeding projects. To determine its genetic basis, a population consisting of 239 recombinant inbred lines, derived from the cross Mo17 x Huangzao4, was used to detect quantitative trait loci (QTLs) for ear weight under two nitrogen regimes. Under a high nitrogen fertilization regime, one QTL was identified in chromosome bin 2.08-2.09, which explained 7.46% of phenotypic variance and an increase in ear weight of about 5.79 g, owing to an additive effect. Under a low nitrogen regime, another QTL was identified in chromosome bin 1.10-1.11; it accounted for 7.11% of phenotypic variance and a decrease of 5.24 g in ear weight, due to an additive effect. Based on comparisons with previous studies, these two QTLs are new loci associated with ear weight in maize. These findings contribute to our knowledge about the genetic basis of ear weight in maize.  相似文献   

9.
An elite, three-generation family from the USDA Meat Animal Research Center twinning population was examined for evidence of ovulation rate quantitative trait loci (QTL). This work was both a continuation of previously reported results suggesting evidence for ovulation rate QTL on bovine Chromosome (Chr) 7 and an extension of a genome-wide search for QTL. Additional markers were typed on Chr 7 to facilitate interval mapping and testing of the hypothesis of one versus two QTL on that chromosome. In addition, 14 other informative markers were added to a selective genotyping genome screening of this family, and markers exhibiting nominal significance were used to identify chromosomal regions that were then subjected to more exhaustive analysis. For Chr 7, a total of 12 markers were typed over a region spanning the proximal two-thirds of the chromosome. Results from interval mapping analyses indicated evidence suggestive of the presence of QTL (nominal P < 0.00077) within this region. Subsequent analysis with a model postulating two QTL provided evidence (P < 0.05) for two rather than one QTL on this chromosome. Preliminary analysis with additional markers indicated nominal significance (P < 0.05) for regions of Chrs 5, 10, and 19. Each of these regions was then typed with additional markers for the entire three-generation pedigree. Significant evidence (P < 0.000026) of ovulation rate QTL was found for Chrs 5 and 19, while support on Chr 10 failed to exceed a suggestive linkage threshold (P > 0.00077). Received: 14 May 1999 / Accepted: 14 October 1999  相似文献   

10.
In silico mapping of quantitative trait loci in maize   总被引:11,自引:0,他引:11  
Quantitative trait loci (QTL) are most often detected through designed mapping experiments. An alternative approach is in silico mapping, whereby genes are detected using existing phenotypic and genomic databases. We explored the usefulness of in silico mapping via a mixed-model approach in maize (Zea mays L.). Specifically, our objective was to determine if the procedure gave results that were repeatable across populations. Multilocation data were obtained from the 1995–2002 hybrid testing program of Limagrain Genetics in Europe. Nine heterotic patterns comprised 22,774 single crosses. These single crosses were made from 1,266 inbreds that had data for 96 simple sequence repeat (SSR) markers. By a mixed-model approach, we estimated the general combining ability effects associated with marker alleles in each heterotic pattern. The numbers of marker loci with significant effects—37 for plant height, 24 for smut [Ustilago maydis (DC.) Cda.] resistance, and 44 for grain moisture—were consistent with previous results from designed mapping experiments. Each trait had many loci with small effects and few loci with large effects. For smut resistance, a marker in bin 8.05 on chromosome 8 had a significant effect in seven (out of a maximum of 18) instances. For this major QTL, the maximum effect of an allele substitution ranged from 5.4% to 41.9%, with an average of 22.0%. We conclude that in silico mapping via a mixed-model approach can detect associations that are repeatable across different populations. We speculate that in silico mapping will be more useful for gene discovery than for selection in plant breeding programs.  相似文献   

11.
Identification of quantitative trait loci for nitrogen use efficiency in maize   总被引:18,自引:0,他引:18  
Intensively managed crop systems are normally dependent on nitrogen input to maximize yield potential. Improvements in nitrogen- use efficiency (NUE) in crop plants may support the development of cropping systems that are more economically efficient and environment friendly. The objective of this study was to map and characterize quantitative trait loci (QTL) for NUE in a maize population. In preliminary experiments, inbred lines contrasting for NUE were identified and were used to generate populations of F2:3 families for genetic study. A total of 214 F2:3 families were evaluated in replicated trials under high nitrogen (280 kg/ha) and low nitrogen (30 kg/ha) conditions in 1996 and 1997. Analysis of ear-leaf area, plant height, grain yield, ears per plant, kernels number per ear, and kernel weight indicated significant genetic variation among F2:3 families. The heritability of these traits was found to be high (h2=0.57–0.81). The mapping population were genotyped using a set of 99 restriction fragment length polymorphism (RFLP) markers. A linkage map of these markers was developed and used to identify QTL. Between two and six loci were found to be associated with each trait. The correspondence of several genomic regions with traits measured under nitrogen limited conditions suggests the presence of QTL associated with NUE. QTLs will help breeders to improve their maize ideotype of a low-nitrogen efficiency by identifying those constitutive and adaptive traits involved in the expression of traits significantly correlated with yield, such as ear leaf area and number of ears per plant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Breeding maize for gray leaf spot (GLS) resistance has been hindered by the quantitative nature of the inheritance of GLS resistance and by the limitations of selection under less than optimumal disease pressure. In order to identify the quantitative trait loci (QTLs) controlling GLS resistance, a cross was made between B73 (susceptible) and Va14 (resistant) to generate a large F2 population. Six GLS disease assessments were made throughout the disease season for over 1000 F2 plants in 1989, and for 600 F2-derived F3 lines replicated in two blocks in 1990. RFLP analysis for78 marker loci representing all ten maize chromosomes was conducted in 239 F2 individuals including those with the extreme GLS disease phenotypes. The GLS disease scores of the three field evaluations, each averaged over six ratings, were separately used for the interval mapping in order to determine the consistency of the QTL effects. The heavy GLS disease pressure, meticulous disease ratings, and large population size of this study afforded us the sensitivity for detecting QTL effects. QTLs located on three chromosomes (1, 4, and 8) had large effects on GLS resistance, each explaining 35.0–56.0%, 8.8–14.3%, and 7.7–11.0% of the variance, respectively. These three QTL effects were remarkably consistent across three disease evaluations over 2 years and two generations. Smaller QTL effects were also found on chromosomes 2 and 5, but the chromosome-5 effect might be a false positive because it was not repeatable even in the same location. The chromosome-1 QTLs had the largest effect or highest R2 reported for any quantitative trait to-date. Except for the chromosome-4 gene, which was from the susceptible parent B73, the resistance alleles at all QTL were derived from Va14. The resistance QTLs on chromosomes 1 and 2 appear to have additive effects, but those on chromosomes 4 and 8 are dominant and recessive, respectively. Significant interaction between the QTLs on chromosomes 1 and 4 was detected in all three evaluations. Cumulatively, the four QTLs identified in this study explained 44, 60, and 68% of the variance in F2, and in F3 replications 1 and 2, respectively.  相似文献   

13.
Genotyping of an F2 population obtained from crossing of the maize lines Odesskaya 139 and R221 that are contrasting on resistance to fusarium rot is conducted. A codominant DNA marker RGA11 to the locus corresponding to maize resistance to fusarium rot is discovered at a distance of 18.3 cM.  相似文献   

14.
A new QTL for resistance to Fusarium ear rot in maize   总被引:1,自引:0,他引:1  
Understanding the inheritance of resistance to Fusarium ear rot is a basic prerequisite for an efficient resistance breeding in maize. In this study, 250 recombinant inbred lines (RILs) along with their resistant (BT-1) and susceptible (N6) parents were planted in Zhengzhou with three replications in 2007 and 2008. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 207 polymorphic simple sequence repeat (SSR) markers with average genetic distances of 8.83?cM, the ear rot resistance quantitative trait loci (QTL) were analyzed by composite interval mapping with a mixed model (MCIM) across the environments. In total, four QTL were detected on chromosomes 3, 4, 5, and 6. The resistance allele at each of these four QTL was contributed by resistant parent BT-1, and accounted for 2.5-10.2% of the phenotypic variation. However, no significant epistasis interaction effect was detected after a two-dimensional genome scan. Among the four QTL, one QTL with the largest effect on chromosome 4 (bin 4.06) can be suggested to be a new locus for resistance to Fusarium ear rot, which broadens the genetic base for resistance to the disease and can be used for further genetic improvement in maize-breeding programs.  相似文献   

15.
Molecular Breeding - Soybean plays an important role in seed oil production for foods and industrial products in the USA. Chemical hydrogenation of commodity soybean oil increased functionality but...  相似文献   

16.
Drought tolerance is one of the most important but complex traits of crops. We looked for quantitative trait loci (QTLs) that affect drought tolerance in maize. Two maize inbreds and their advanced lines were evaluated for drought-related traits. A genetic linkage map developed using RFLP markers was used to identify QTLs associated with drought-related traits. Twenty-two QTLs were detected, with a minimum of one and a maximum of nine for drought-related traits. A single-QTL was detected for sugar concentration accounting for about 52.2% of the phenotypic variation on chromosome 6. A single-QTL was also identified for each of the traits root density, root dry weight, total biomass, relative water content, and leaf abscisic acid content, on chromosomes 1 and 7, contributing to 24, 0.2, 0.4, 7, and 19% of the phenotypic variance, respectively. Three QTLs were identified for grain yield on chromosomes 1, 5, and 9, explaining 75% of the observed phenotypic variability, whereas four QTLs were detected for osmotic potential on chromosomes 1, 3, and 9, together accounting for 50% of the phenotypic variance. Nine QTLs were detected for leaf surface area on chromosomes 3 and 9, with various degrees of phenotypic variance, ranging from 25.8 to 42.2%. Four major clusters of QTLs were identified on chromosomes 1, 3, 7, and 9. A QTL for yield on chromosome 1 was found co-locating with the QTLs for root traits, total biomass, and osmotic potential in a region of about 15 cM. A cluster of QTLs for leaf surface area were coincident with a QTL for osmotic potential on chromosome 3. The QTLs for leaf area also clustered on chromosome 9, whereas QTLs for leaf abscisic acid content and relative water content coincided on chromosome 7, 10 cM apart. Co-location of QTLs for different traits indicates potential pleiotropism or tight linkage, which may be useful for indirect selection in maize improvement for drought tolerance.  相似文献   

17.
Aphanomyces root rot, caused by Aphanomyces euteiches Drechs, is the most-important disease of pea ( Pisum sativum L.) worldwide. No efficient chemicals are available to control the pathogen. To facilitate breeding for Aphanomyces root rot resistance and to better understand the inheritance of partial resistance, our goal was to identify QTLs associated with field partial resistance. A population of 127 RILs from the cross Puget (susceptible) x 90-2079 (partially resistant) was used. The lines were assessed for resistance to A. euteiches under field conditions at two locations in the United States (Pullman, Wash. and LeSueur, Minn.) in 1996 and 1998 for three criteria based on symptom intensity and disease effects on the whole plant. The RILs were genotyped using automated AFLPs, RAPDs, SSRs, ISSRs, STSs, isozymes and morphological markers. The resulting genetic map consisted of 324 linked markers distributed over 13 linkage groups covering 1,094 cM (Kosambi). Twenty seven markers were anchored to other published pea genetic maps. A total of seven genomic regions were associated with Aphanomyces root rot resistance. The first one, located on LG IVb and named Aph1, was considered as "major" since it was highly consistent over the years, locations and resistance criteria studied, and it explained up to 47% of the variation in the 1998 Minnesota trial. Two other year-specific QTLs, namely Aph2 and Aph3, were revealed from different scoring criteria on LG V and Ia, respectively. Aph2 and Aph3 mapped near the r (wrinkled/round seeds) and af (normal/afila leaves) genes, and accounted for up to 32% and 11% of the variation, respectively. Four other "minor" QTLs, identified on LG Ib, VII and B, were specific to one environment and one resistance criterion. The resistance alleles of Aph3 and the two "minor" QTLs on LG Ib were derived from the susceptible parent. Flanking markers for the major Aphanomyces resistance QTL, Aph1, have been identified for use in marker-assisted selection to improve breeding efficiency.  相似文献   

18.
A search for quantitative trait loci for ovulation rate in cattle   总被引:4,自引:0,他引:4  
Seventy-seven polymorphic microsatellites were analysed in offspring of three elite sires that were part of the foundation of an experimental population selected for twinning rate at the US Meat Animal Research Center, Clay Center, Nebraska. All females were assessed for ovulation rate by rectal palpation of corpora lutea over 8–10 consecutive oestrous cycles from approximately 12 to 18 months of age, and associations between ovulation rate and sire allele were examined in each of the three sire groups. A preliminary analysis was performed using selectively genotyped daughters of each sire. Markers found significant or approaching significance were also genotyped in all daughters, sons and granddaughters of these sires. A test of marker associations limited to the granddaughter data provided an independent confirmation of marker effect and significance relative to the initial test with daughter data. Putative ovulation rate quantitative trait loci were detected on chromosomes 7 and 23. Marker UWCA20 on chromosome 7 was associated with an effect in excess of one phenotypic standard deviation and accounted for approximately 10% of phenotypic variation ovulation rate. Marker CYP21 (steroid 21-hydroxylase) on chromosome 23 was associated with an effect of slightly less than half a phenotypic standard deviation and accounted for approximately 4% of phenotypic variation.  相似文献   

19.
The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.  相似文献   

20.
To capture diverse alleles at a set of loci associated with disease resistance in maize, heterogeneous inbred family (HIF) analysis was applied for targeted QTL mapping and near-isogenic line (NIL) development. Tropical maize lines CML52 and DK888 were chosen as donors of alleles based on their known resistance to multiple diseases. Chromosomal regions (“bins”; n = 39) associated with multiple disease resistance (MDR) were targeted based on a consensus map of disease QTLs in maize. We generated HIFs segregating for the targeted loci but isogenic at ~97% of the genome. To test the hypothesis that CML52 and DK888 alleles at MDR hotspots condition broad-spectrum resistance, HIFs and derived NILs were tested for resistance to northern leaf blight (NLB), southern leaf blight (SLB), gray leaf spot (GLS), anthracnose leaf blight (ALB), anthracnose stalk rot (ASR), common rust, common smut, and Stewart’s wilt. Four NLB QTLs, two ASR QTLs, and one Stewart’s wilt QTL were identified. In parallel, a population of 196 recombinant inbred lines (RILs) derived from B73 × CML52 was evaluated for resistance to NLB, GLS, SLB, and ASR. The QTLs mapped (four for NLB, five for SLB, two for GLS, and two for ASR) mostly corresponded to those found using the NILs. Combining HIF- and RIL-based analyses, we discovered two disease QTLs at which CML52 alleles were favorable for more than one disease. A QTL in bin 1.06–1.07 conferred resistance to NLB and Stewart’s wilt, and a QTL in 6.05 conferred resistance to NLB and ASR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号