首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Posterior body wall muscle contraction (pBoc) in the nematode Caenorhabditis elegans occurs rhythmically every 45-50 s and mediates defecation. pBoc is controlled by inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in the intestine. The intestinal epithelium can be studied by patch clamp electrophysiology, Ca2+ imaging, genome-wide reverse genetic analysis, forward genetics, and molecular biology and thus provides a powerful model to develop an integrated systems level understanding of a nonexcitable cell oscillatory Ca2+ signaling pathway. Intestinal cells express an outwardly rectifying Ca2+ (ORCa) current with biophysical properties resembling those of TRPM channels. Two TRPM homologues, GON-2 and GTL-1, are expressed in the intestine. Using deletion and severe loss-of-function alleles of the gtl-1 and gon-2 genes, we demonstrate here that GON-2 and GTL-1 are both required for maintaining rhythmic pBoc and intestinal Ca2+ oscillations. Loss of GTL-l and GON-2 function inhibits I(ORCa) approximately 70% and approximately 90%, respectively. I(ORCa) is undetectable in gon-2;gtl-1 double mutant cells. These results demonstrate that (a) both gon-2 and gtl-1 are required for ORCa channel function, and (b) GON-2 and GTL-1 can function independently as ion channels, but that their functions in mediating I(ORCa) are interdependent. I(ORCa), I(GON-2), and I(GTL-1) have nearly identical biophysical properties. Importantly, all three channels are at least 60-fold more permeable to Ca2+ than Na+. Epistasis analysis suggests that GON-2 and GTL-1 function in the IP3 signaling pathway to regulate intestinal Ca2+ oscillations. We postulate that GON-2 and GTL-1 form heteromeric ORCa channels that mediate selective Ca2+ influx and function to regulate IP3 receptor activity and possibly to refill ER Ca2+ stores.  相似文献   

2.
Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous TRPM channel proteins, GON-2 and GTL-1.  相似文献   

3.
In rat basophilic leukemia (RBL) cells and Jurkat T cells, Ca(2+) release-activated Ca(2+) (CRAC) channels open in response to passive Ca(2+) store depletion. Inwardly rectifying CRAC channels admit monovalent cations when external divalent ions are removed. Removal of internal Mg(2+) exposes an outwardly rectifying current (Mg(2+)-inhibited cation [MIC]) that also admits monovalent cations when external divalent ions are removed. Here we demonstrate that CRAC and MIC currents are separable by ion selectivity and rectification properties: by kinetics of activation and susceptibility to run-down and by pharmacological sensitivity to external Mg(2+), spermine, and SKF-96365. Importantly, selective run-down of MIC current allowed CRAC and MIC current to be characterized under identical ionic conditions with low internal Mg(2+). Removal of internal Mg(2+) induced MIC current despite widely varying Ca(2+) and EGTA levels, suggesting that Ca(2+)-store depletion is not involved in activation of MIC channels. Increasing internal Mg(2+) from submicromolar to millimolar levels decreased MIC currents without affecting rectification but did not alter CRAC current rectification or amplitudes. External Mg(2+) and Cs(+) carried current through MIC but not CRAC channels. SKF-96365 blocked CRAC current reversibly but inhibited MIC current irreversibly. At micromolar concentrations, both spermine and extracellular Mg(2+) blocked monovalent MIC current reversibly but not monovalent CRAC current. The biophysical characteristics of MIC current match well with cloned and expressed TRPM7 channels. Previous results are reevaluated in terms of separate CRAC and MIC channels.  相似文献   

4.
Transient receptor potential melastatin 7 (TRPM7) channels were originally identified electrophysiologically when depletion of cytosolic Mg(2+) resulted in the gradual development of an outwardly rectifying cation current. Conversely, inclusion of millimolar Mg(2+) in internal solutions prevented activation of these channels in whole cell patch clamp. We recently demonstrated that the Jurkat T-cell whole cell TRPM7 channels are inhibited by internal Mg(2+) in a biphasic manner, displaying high [IC(50(1)) ≈ 10 μM] and low [IC(50(2)) ≈ 165 μM] affinity inhibitor sites. In that study, we had characterized the dependence of the maximum cell current density on intracellular Mg(2+) concentration. To characterize Mg(2+) inhibition in Jurkat T cells in more detail and compare it to whole cell results, we recorded single TRPM7 channels in cell-free membrane patches and investigated the dependence of their activity on Mg(2+) added on the cytoplasmic side. We systematically varied free Mg(2+) from 265 nM to 407 μM and evaluated the extent of channel inhibition in inside-out patch for 58 patches. We found that the TRPM7 channel shows two conductance levels of 39.0 pS (γ(1)) and 18.6 pS (γ(2)) and that both are reversibly inhibited by internal Mg(2+). The 39.0-pS conductance is the dominant state of the channel, observed most frequently in this recording configuration. The dose-response relation in inside-out patches shows a steeper Mg(2+) dependence than in whole cell, yielding IC(50(1)) of 25.1 μM and IC(50(2)) of 91.2 μM.. Single-channel analysis shows that the primary effect of Mg(2+) in multichannel patches is a reversible reduction of the number of conducting channels (N(o)). Additionally, at high Mg(2+) concentrations, we observed a saturating 20% reduction in unitary conductance (γ(1)). Thus Mg(2+) inhibition in whole cell can be explained by a drop in individual participating channels and a modest reduction in conductance. We also found that TRPM7 channels in some patches were not sensitive to this ion at submaximal Mg(2+) concentrations. Interestingly, Mg(2+) inhibition showed the property of use dependence: with repeated applications, Mg(2+) effect became gradually more potent, which suggests that Mg(2+) sensitivity of the channel is a dynamic characteristic that depends on other membrane factors.  相似文献   

5.
Church DL  Lambie EJ 《Genetics》2003,165(2):563-574
The initiation of postembryonic cell divisions by the gonadal precursors of C. elegans requires the activity of gon-2. gon-2 encodes a predicted cation channel (GON-2) of the TRPM subfamily of TRP proteins and is likely to mediate the influx of Ca(2+) and/or Mg(2+). We report here that mutations in gem-4 (gon-2 extragenic modifier) are capable of suppressing loss-of-function alleles of gon-2. gem-4 encodes a member of the copine family of Ca(2+)-dependent phosphatidylserine binding proteins. Overall, our data indicate that GEM-4 antagonizes GON-2. This antagonism could be mediated by a direct inhibition of GON-2 by GEM-4, since both proteins are predicted to be localized to the plasma membrane. Alternatively, GEM-4 could affect GON-2 activity levels by either promoting endocytosis or inhibiting exocytosis of vesicles that carry GON-2. It is also possible that GEM-4 and GON-2 act in parallel to each other. Mutation of gem-4 does not suppress the gonadal defects produced by inactivation of gon-4, suggesting that gon-4 either acts downstream of gem-4 and gon-2 or acts in a parallel regulatory pathway.  相似文献   

6.
Native and recombinant G protein-gated inwardly rectifying potassium (GIRK) channels are directly activated by the betagamma subunits of GTP-binding (G) proteins. The presence of phosphatidylinositol-bis-phosphate (PIP(2)) is required for G protein activation. Formation (via hydrolysis of ATP) of endogenous PIP(2) or application of exogenous PIP(2) increases the mean open time of GIRK channels and sensitizes them to gating by internal Na(+) ions. In the present study, we show that the activity of ATP- or PIP(2)-modified channels could also be stimulated by intracellular Mg(2+) ions. In addition, Mg(2+) ions reduced the single-channel conductance of GIRK channels, independently of their gating ability. Both Na(+) and Mg(2+) ions exert their gating effects independently of each other or of the activation by the G(betagamma) subunits. At high levels of PIP(2), synergistic interactions among Na(+), Mg(2+), and G(betagamma) subunits resulted in severalfold stimulated levels of channel activity. Changes in ionic concentrations and/or G protein subunits in the local environment of these K(+) channels could provide a rapid amplification mechanism for generation of graded activity, thereby adjusting the level of excitability of the cells.  相似文献   

7.
8.
Chloride channels in the small intestinal cell line IEC-18   总被引:1,自引:0,他引:1  
Small intestinal crypt cells play a critical role in modulating Cl- secretion during digestion. The types of Cl- channels mediating Cl- secretion in the small intestine was investigated using the intestinal epithelial cell line, IEC-18, which was derived from rat small intestine crypt cells. In initial radioisotope efflux studies, exposure to forskolin, ionomycin or a decrease in extracellular osmolarity significantly increased 36Cl efflux as compared to control cells. Whole cell patch clamp techniques were subsequently used to examine in more detail the swelling-, Ca2+-, and cAMP-activated Cl- conductance. Decreasing the extracellular osmolarity from 290 to 200 mOsm activated a large outwardly rectifying Cl- current that was voltage-independent and had an anion selectivity of I- > Cl-. Increasing cytosolic Ca2+ by ionomycin activated whole cell Cl- currents, which were also outwardly rectifying but were voltage-dependent. The increase in intracellular Ca2+ levels with ionomycin was confirmed with fura-2 loaded IEC-18 cells. A third type of whole cell Cl- current was observed after increases in intracellular cAMP induced by forskolin. These cAMP-activated Cl- currents have properties consistent with cystic fibrosis transmembrane regulator (CFTR) Cl- channels, as the currents were blocked by glibenclamide or NPPB but insensitive to DIDS. In addition, the current-voltage relationship was linear and had an anion selectivity of Cl- > I-. Confocal immunofluorescence studies and Western blots with two different anti-CFTR antibodies confirmed the expression of CFTR. These results suggest that small intestinal crypt cells express multiple types of Cl- channels, which may all contribute to net Cl- secretion.  相似文献   

9.
To fertilize, mammalian sperm must complete a maturational process called capacitation. It is thought that the membrane potential of sperm hyperpolarizes during capacitation, possibly due to the opening of K(+) channels, but electrophysiological evidence is lacking. In this report, using patch-clamp recordings obtained from isolated mouse spermatogenic cells we document the presence of a novel K(+)-selective inwardly rectifying current. Macroscopic current activated at membrane potentials below the equilibrium potential for K(+) and its magnitude was dependent on the external K(+) concentration. The channels selected K(+) over other monovalent cations. Current was virtually absent when external K(+) was replaced with Na(+) or N-methyl-D-glucamine. Addition of Cs(+) or Ba(2+) (IC(50) of approximately 15 microM) to the external solution effectively blocked K(+) current. Dialyzing the cells with a Mg(2+)-free solution did not affect channel activity. Cytosolic acidification reversibly inhibited the current. We verified that the resting membrane potential of mouse sperm changed from -52 +/- 6 to -66 +/- 9 mV during capacitation in vitro. Notably, application of 0.3-1 mM Ba(2+) during capacitation prevented this hyperpolarization and decreased the subsequent exocytotic response to zona pellucida. A mechanism is proposed whereby opening of inwardly rectifying K(+) channels may produce hyperpolarization under physiological conditions and contribute to the cellular changes that give rise to the capacitated state in mature sperm.  相似文献   

10.
Myogenic vasoconstriction results from pressure-induced vascular smooth muscle cell depolarization and Ca(2+) influx via voltage-dependent Ca(2+) channels, a process that is significantly attenuated by inhibition of protein kinase C (PKC). It was recently reported that the melastatin transient receptor potential (TRP) channel TRPM4 is a critical mediator of pressure-induced smooth muscle depolarization and constriction in cerebral arteries. Interestingly, PKC activity enhances the activation of cloned TRPM4 channels expressed in cultured cells by increasing sensitivity of the channel to intracellular Ca(2+). Thus we postulated that PKC-dependent activation of TRPM4 might be a critical mediator of vascular myogenic tone. We report here that PKC inhibition attenuated pressure-induced constriction of cerebral vessels and that stimulation of PKC activity with phorbol 12-myristate 13-acetate (PMA) enhanced the development of myogenic tone. In freshly isolated cerebral artery myocytes, we identified a Ca(2+)-dependent, rapidly inactivating, outwardly rectifying, iberiotoxin-insensitive cation current with properties similar to those of expressed TRPM4 channels. Stimulation of PKC activity with PMA increased the intracellular Ca(2+) sensitivity of this current in vascular smooth muscle cells. To validate TRPM4 as a target of PKC regulation, antisense technology was used to suppress TRPM4 expression in isolated cerebral arteries. Under these conditions, the magnitude of TRPM4-like currents was diminished in cells from arteries treated with antisense oligonucleotides compared with controls, identifying TRPM4 as the molecular entity responsible for the PKC-activated current. Furthermore, the extent of PKC-induced smooth muscle cell depolarization and vasoconstriction was significantly decreased in arteries treated with TRPM4 antisense oligonucleotides compared with controls. We conclude that PKC-dependent regulation of TRPM4 activity contributes to the control of cerebral artery myogenic tone.  相似文献   

11.
Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts   总被引:1,自引:0,他引:1  
TREK-1 is a mechanosensitive member of the two-pore domain potassium channel family (2PK+) that is also sensitive to lipids, free fatty acids (including arachidonic acid), temperature, intracellular pH, and a range of clinically relevant compounds including volatile anaesthetics. TREK-1 is known to be expressed at high levels in excitable tissues, such as the nervous system, the heart and smooth muscle, where it is believed to play a prominent role in controlling resting cell membrane potential and electrical excitability. In this report, we use RT-PCR, Western blotting and immunohistochemistry to confirm that human derived osteoblasts and MG63 cells express TREK-1 mRNA and protein. In addition, we show gene expression of TREK2c and TRAAK channels. Furthermore, whole cell patch clamp electrophysiology demonstrates that these cells express a spontaneously active, outwardly rectifying potassium "background leak" current that shares many similarities to TREK-1. The outward current is largely insensitive to TEA and Ba2+, and is sensitive to application of lysophosphatidylcholine (LPC). In addition, blocking TREK-1 channel activity is shown to upregulate bone cell proliferation. It is concluded that human osteoblasts functionally express TREK-1 and that these channels contribute, at least in part, to the resting membrane potential of human osteoblast cells. We hypothesise a possible role for TREK-1 in mechanotransduction, leading to bone remodelling.  相似文献   

12.
Neuronal networks operate over a wide range of activity levels, with both neuronal and nonneuronal cells contributing to the balance of excitation and inhibition. Activity imbalance within neuronal networks underlies many neurological diseases, such as epilepsy. The Caenorhabditis elegans locomotor circuit operates via coordinated activity of cholinergic excitatory and GABAergic inhibitory transmission. We have previously shown that a gain-of-function mutation in a neuronal acetylcholine receptor, acr-2(gf), causes an epileptic-like convulsion behavior. Here we report that the behavioral and physiological effects of acr-2(gf) require the activity of the TRPM channel GTL-2 in nonneuronal tissues. Loss of gtl-2 function does not affect baseline synaptic transmission but can compensate for the excitation-inhibition imbalance caused by acr-2(gf). The compensatory effects of removing gtl-2 are counterbalanced by another TRPM channel, GTL-1, and can be recapitulated by acute treatment with divalent cation chelators, including those specific for Zn(2+). Together, these data reveal an important role for ion homeostasis in the balance of neuronal network activity and a novel function of nonneuronal TRPM channels in the fine-tuning of this network activity.  相似文献   

13.
The Cl(-) channels of brown adipocytes electrophysiologically resemble outwardly rectifying Cl(-) channels (ORCC). To study tentative Ca(2+) regulation of these channels, we attempted to control Ca(2+) levels at the cytoplasmic side of the inside-out membrane patches with Ca(2+)-chelating agents. However, we found that the commonly used Ca(2+)-chelators EGTA and BAPTA by themselves influenced the Cl(-) channel currents, unrelated to their calcium chelating effects. Consequently, in this report we delineate effects of Ca(2+)-chelators (acting from the cytoplasmic side) on the single Cl(-) channel currents in patch-clamp experiments. Using fixed (1-2 mM) concentrations of chelators, two types of Cl(-) channels were identified, as discriminated by their reaction to the Ca(2+)-chelators and by their conductance: true-blockage channels (31 pS) and quasi-blockage channels (52 pS). In true-blockage channels, EGTA and BAPTA inhibited channel activity in a classical flickery type manner. In quasi-blockage channels, chelators significantly shortened the duration of individual openings, as in a flickering block, but the overall channel activity tended to increase. This dual effect of mean open time decrease accompanied by a tendency of open probability to increase we termed a quasi-blockage. Despite the complications due to the chelators as such, we could detect a moderate inhibitory effect of Ca(2+). The anionic classical Cl(-) channel blockers DIDS and SITS could mimic the true/quasi blockage of EGTA and BAPTA. It was concluded that at least in this experimental system, standard techniques for Ca(2+) level control in themselves could fundamentally affect the behaviour of Cl(-) channels.  相似文献   

14.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarization that creates time-dependent, inward rectifying currents, gated by the movement of the intrinsic voltage sensor S4. However, inward rectification of the HCN currents is not only observed in the time-dependent HCN currents, but also in the instantaneous HCN tail currents. Inward rectification can also be seen in mutant HCN channels that have mainly time-independent currents (5). In the present study, we show that intracellular Mg(2+) functions as a voltage-dependent blocker of HCN channels, acting to reduce the outward currents. The affinity of HCN channels for Mg(2+) is in the physiological range, with Mg(2+) binding with an IC(50) of 0.53 mM in HCN2 channels and 0.82 mM in HCN1 channels at +50 mV. The effective electrical distance for the Mg(2+) binding site was found to be 0.19 for HCN1 channels, suggesting that the binding site is in the pore. Removing a cysteine in the selectivity filter of HCN1 channels reduced the affinity for Mg(2+), suggesting that this residue forms part of the binding site deep within the pore. Our results suggest that Mg(2+) acts as a voltage-dependent pore blocker and, therefore, reduces outward currents through HCN channels. The pore-blocking action of Mg(2+) may play an important physiological role, especially for the slowly gating HCN2 and HCN4 channels. Mg(2+) could potentially block outward hyperpolarizing HCN currents at the plateau of action potentials, thus preventing a premature termination of the action potential.  相似文献   

15.
The endogenous Mg(2+)-inhibited cation (MIC) current was recently described in different cells of hematopoietic lineage and was implicated in the regulation of Mg2+ homeostasis. Here we present a single channel study of endogenously expressed Mg(2+)-dependent cation channels in the human myeloid leukemia K562 cells. Inwardly directed unitary currents were activated in cell-attached experiments in the absence of Ca2+ and Mg2+ in the pipette solution. The current-voltage (I-V) relationships displayed strong inward rectification and yielded a single channel slope conductance of approximately 30 pS at negative potentials. The I-V relationships were not altered by patch excision into divalent-free solution. Channel open probability (P(o)) and mean closed time constant (tau(C)) were strongly voltage-dependent, indicating that gating mechanisms may underlie current inward rectification. Millimolar concentrations of Ca2+ or Mg2+ applied to the cytoplasmic side of the membrane produced slow irreversible inhibition of channel activity. The Mg(2+)-dependent cation channels described in this study differ from the MIC channels described in human T-cells, Jurkat, and rat basophilic leukemia (RBL) cells in their I-V relationships, kinetic parameters and dependence on intracellular divalent cations. Our results suggested that endogenously expressed Mg(2+)-dependent cation channels in K562 cells and the MIC channels in other hematopoietic cells might be formed by different channel proteins.  相似文献   

16.
TRPM3 is a poorly understood member of the large family of transient receptor potential (TRP) ion channels. Here we describe five novel splice variants of TRPM3, TRPM3alpha1-5. These variants are characterized by a previously unknown amino terminus of 61 residues. The differences between the five variants arise through splice events at three different sites. One of these splice sites might be located in the pore region of the channel as indicated by sequence alignment with other, better-characterized TRP channels. We selected two splice variants, TRPM3alpha1 and TRPM3alpha2, that differ only in this presumed pore region and analyzed their biophysical characteristics after heterologous expression in human embryonic kidney 293 cells. TRPM3alpha1 as well as TRPM3alpha2 induced a novel, outwardly rectifying cationic conductance that was tightly regulated by intracellular Mg(2+). However, these two variants are highly different in their ionic selectivity. Whereas TRPM3alpha1-encoded channels are poorly permeable for divalent cations, TRPM3alpha2-encoded channels are well permeated by Ca(2+) and Mg(2+). Additionally, we found that currents through TRPM3alpha2 are blocked by extracellular monovalent cations, whereas currents through TRPM3alpha1 are not. These differences unambiguously show that TRPM3 proteins constitute a pore-forming channel subunit and localize the position of the ion-conducting pore within the TRPM3 protein. Although the ionic selectivity of ion channels has traditionally been regarded as rather constant for a given channel-encoding gene, our results show that alternative splicing can be a mechanism to produce channels with very different selectivity profiles.  相似文献   

17.
Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K(+) efflux from macrophages associated with caspase-1 activation and increased IL-1β release. The mechanism of this toxin-induced K(+) efflux is unknown. The goals of the current study were to determine whether LeTx-induced K(+) efflux from macrophages is mediated by toxin effects on specific K(+) channels and whether altered K(+)-channel activity is involved in LeTx-induced IL-1β release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K(+) channels that have been identified in mouse macrophages: Ba(2+)-sensitive inwardly rectifying K(+) (Kir) channels and 4-aminopyridine-sensitive outwardly rectifying voltage-gated K(+) (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LF(E687C)) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1β. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1β, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1β. Activation of caspase-1 was not required for LeTx-induced activation of either of the K(+) channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1β involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation.  相似文献   

18.
Mg homeostasis is critical to eukaryotic cells, but the contribution of Mg transporter activity to homeostasis is not fully understood. In yeast, Mg uptake is primarily mediated by the Alr1 transporter, which also allows low affinity uptake of other divalent cations such as Ni(2+), Mn(2+), Zn(2+) and Co(2+). Using Ni(2+) uptake to assay Alr1 activity, we observed approximately nine-fold more activity under Mg-deficient conditions. The mnr2 mutation, which is thought to block release of vacuolar Mg stores, was associated with increased Alr1 activity, suggesting Alr1 was regulated by intracellular Mg supply. Consistent with a previous report of the regulation of Alr1 expression by Mg supply, Mg deficiency and the mnr2 mutation both increased the accumulation of a carboxy-terminal epitope-tagged version of the Alr1 protein (Alr1-HA). However, Mg supply had little effect on ALR1 promoter activity or mRNA levels. In addition, while Mg deficiency caused a seven-fold increase in Alr1-HA accumulation, the N-terminally tagged and untagged Alr1 proteins increased less than two-fold. These observations argue that the Mg-dependent accumulation of the C-terminal epitope-tagged protein was primarily an artifact of its modification. Plasma membrane localization of YFP-tagged Alr1 was also unaffected by Mg supply, indicating that a change in Alr1 location did not explain the increased activity we observed. We conclude that variation in Alr1 protein accumulation or location does not make a substantial contribution to its regulation by Mg supply, suggesting Alr1 activity is directly regulated via as yet unknown mechanisms.  相似文献   

19.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

20.
The ability of membrane voltage to activate high conductance, calcium-activated (BK-type) K(+) channels is enhanced by cytosolic calcium (Ca(2+)). Activation is sensitive to a range of [Ca(2+)] that spans over four orders of magnitude. Here, we examine the activation of BK channels resulting from expression of cloned mouse Slo1 alpha subunits at [Ca(2+)] and [Mg(2+)] up to 100 mM. The half-activation voltage (V(0.5)) is steeply dependent on [Ca(2+)] in the micromolar range, but shows a tendency towards saturation over the range of 60-300 microM Ca(2+). As [Ca(2+)] is increased to millimolar levels, the V(0.5) is strongly shifted again to more negative potentials. When channels are activated by 300 microM Ca(2+), further addition of either mM Ca(2+) or mM Mg(2+) produces similar negative shifts in steady-state activation. Millimolar Mg(2+) also produces shifts of similar magnitude in the complete absence of Ca(2+). The ability of millimolar concentrations of divalent cations to shift activation is primarily correlated with a slowing of BK current deactivation. At voltages where millimolar elevations in [Ca(2+)] increase activation rates, addition of 10 mM Mg(2+) to 0 Ca(2+) produces little effect on activation time course, while markedly slowing deactivation. This suggests that Mg(2+) does not participate in Ca(2+)-dependent steps that influence current activation rate. We conclude that millimolar Mg(2+) and Ca(2+) concentrations interact with low affinity, relatively nonselective divalent cation binding sites that are distinct from higher affinity, Ca(2+)-selective binding sites that increase current activation rates. A symmetrical model with four independent higher affinity Ca(2+) binding steps, four voltage sensors, and four independent lower affinity Ca(2+)/Mg(2+) binding steps describes well the behavior of G-V curves over a range of Ca(2+) and Mg(2+). The ability of a broad range of [Ca(2+)] to produce shifts in activation of Slo1 conductance can, therefore, be accounted for by multiple types of divalent cation binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号