首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graminaceous plant species acquire soil iron by the release of phytosiderophores and subsequent uptake of iron(III)-phytosiderophore complexes. As plant species differ in their ability for phytosiderophore hydroxylation prior to release, an electrophoretic method was set up to determine whether hydroxylation affects the net charge of iron(III)-phytosiderophore complexes, and thus chelate stability. At pH 7.0, non-hydroxylated (deoxymugineic acid) and hydroxylated (mugineic acid; epi-hydroxymugineic acid) phytosiderophores form single negatively charged iron(III) complexes, in contrast to iron(III)-nicotianamine. As the degree of phytosiderophore hydroxylation increases, the corresponding iron(III) complex was found to be less readily protonated. Measured pKa values of the amino groups and calculated free iron(III) concentrations in presence of a 10-fold chelator excess were also found to decrease with increasing degree of hydroxylation, confirming that phytosiderophore hydroxylation protects against acid-induced protonation of the iron(III)-phytosiderophore complex. These effects are almost certainly associated with intramolecular hydrogen bonding between the hydroxyl and amino functions. We conclude that introduction of hydroxyl groups into the phytosiderophore skeleton increases iron(III)-chelate stability in acid environments such as those found in the rhizosphere or the root apoplasm and may contribute to an enhanced iron acquisition.  相似文献   

2.
The equilibrium behavior of cationic iron(III) meso-tetrakis(4-N-methyl-pyridiniumyl) porphyrin, Fe(III)TMPyP, in aqueous solution was studied as a function of pH by optical absorption, EPR and (1)H NMR spectroscopies. The presence of several Fe(III)TMPyP species in solution was unequivocally demonstrated: monomeric porphyrin species (a monoaqueous five-coordinated complex, a diaaqueous six-coordinated complex and a monoaqueous-hydroxo six-coordinated complex), a micro-oxo dimer and a bis-hydroxo complex. The addition of salt to the porphyrin solution leads to a simplification of the equilibrium as a function of pH. In this case, only three species were observed in solution: a monomeric porphyrin species, a micro-oxo dimer and a bis-hydroxo complex. Optical absorption, EPR and (1)H NMR spectra contributed to the characterization of these species. Four critical pH values (pK) for Fe(III)TMPyP were obtained in pure buffer and only three pK values were observed in the presence of NaCl. The addition of salt favors the presence of the dimeric species in solution and simplifies the equilibrium in the acidic pH range.  相似文献   

3.
4.
This work reports the synthesis, characterization, and aqueous chemistry of a series of cytotoxic [Au(polypyridyl)Cl2]PF6 complexes {(where polypyridyl = dipyrido[3,2-f:2′,3′-h] quinoxaline (DPQ), dipyrido[3,2-a:2′,3′-c] phenazine (DPPZ) and dipyrido[3,2-a:2′,3′-c](6,7,8,9-tetrahydro) phenazine (DPQC))}. The crystal structure of [Au(DPQ)Cl2]PF6 was determined as example of the series and exhibits the anticipated square planar geometry common for d8 coordination complexes. The crystals of the complex belong to the space group P21/n with a = 7.624(2) Å, b = 18.274(5) Å, c = 14.411(14) Å, β = 98.03(3)°, and Z = 4. In 1H NMR studies of these compounds in the presence of aqueous buffer, all four complexes rapidly converted to the dihydroxy species [Au(polypyridyl)(OH)2] in a stepwise fashion. However, the [Au(polypyridyl)]3+ fragment believed to impart cytotoxicity in human ovarian cancer cell lines (A2780) remained intact and appeared stable for days. It was also noted that these Au(III) complexes were readily reduced in the presence of the common biological reducing agents, reduced glutathione and sodium ascorbate. How solution and redox stability may affect the biological activity of these novel Au(III) complexes is discussed.  相似文献   

5.
Estimates of the concentrations and identity of the predominant complexes of iron with the low-molecular-mass ligands in vivo are important to improve current understanding of the metabolism of this trace element. These estimates require a knowledge of the stability of the iron-citrate complexes. Previous studies on the equilibrium properties of the Fe(III)-citrate and Fe(II)-citrate are in disagreement. Accordingly, in this work, glass electrode potentiometric titrations have been used to re-determine the formation constants of both the Fe(III)- and Fe(II)-citrate systems at 25 degrees C in 1.00 M (Na)Cl and the reliability of these constants has been evaluated by comparing the measured and predicted redox potentials of the ternary Fe(III)-Fe(II)-citrate system. The formation constants obtained in this way were used in computer simulation models of the low-molecular-mass iron fraction in blood plasma. Redox equilibria of iron are thus included in large models of blood plasma for the first time. The results of these calculations show the predominance of Fe(II)-carbonate complexes and a significant amount of aquated Fe(II) in human blood plasma.  相似文献   

6.
The synthesis and characterization of a novel tripodal mono-hydroxamate, bis catecholate siderophore mimic, N(alpha),-N(epsilon)-bis[2,3-dihydroxybenzoyl]-l-lysyl-(gamma-N-methyl-N-hydroxyamido)-l-glutamic acid (H(6)L), is described. The structure of H(6)L was established by 2D NMR and mass spectrometry. The chelation chemistry of H(6)L with respect to iron(III) is characterized in aqueous solution through determination of ligand pK(a) values and iron(III) binding constants using spectrophotometric and potentiometric titration techniques. Proton dependent iron(III)-ligand equilibrium constants were determined using a model based on the sequential protonation of the iron(III)-siderophore complex. These results were used to calculate the pH dependent speciation, the overall formation constant logbeta(110) (31.4) and pM value (18.3) for H(6)L with iron(III). The ability of H(6)L to deliver the essential nutrient iron to living cells is determined through growth promotion assays using various bacterial strains.  相似文献   

7.
Interaction of FeX3, X = Cl, Br with 3 equiv. of NaOEt in toluene/ethanol media provides mixtures of iron (III) oxoethoxide, Fe5O(OEt)13, and its halide alkoxide analogs. The latter have been identified by mass-spectrometric study as Fe5O(OEt)12X and Fe5O(OEt)11X2. Application of FeBr3 as a starting material leads to much more pure samples of Fe5O(OEt)13 isolated with higher yields.  相似文献   

8.
The iron solution chemistry of the FeCl3-gallocyanine system has been investigated by pH titration, UV visible spectroscopy and Mössbauer spectroscopy. Iron reduction was found in the pH range 2–5 and photo-reduction of the iron(III) present was also noted. Due to the instability of the species present in solution, the use of gallocyanine as a spectrophotometric indicator in iron systems is not encouraged. The iron-gallocyanine system was proposed as a potential model of the photosensitive anti-cancer drug, Bleomycin.  相似文献   

9.
Pyridoxal isonicotinoyl hydrazone and its analogs are orally effective Fe(III) chelators which show potential as drugs to treat iron overload disease. The present investigation describes the measurement of the partition coefficient of the apochelator and Fe(III) complex of 20 of these ligands. These measurements have been done to investigate the relationship between lipophilicity and the efficacy of iron chelation in rabbit reticulocytes loaded with non-heme 59Fe. The results demonstrate a linear relationship between the partition coefficient (P) of the apochelator and its Fe(III) complex, and a simple equation has been derived relating these two parameters. Experimental data in the literature are in agreement with the equation. The relationship of the partition coefficients of the iron chelators and of their Fe(III) complexes to the effectiveness of the ligands in mobilizing iron in vitro and in vivo is also discussed.  相似文献   

10.
In order to delineate the interactions of Cr(III) with low molecular mass ligands, often involved in chemistries of toxic and/or biologically significant processes, the aqueous structural speciation of the binary Cr(III)-heida (2-hydroxyethyliminodiacetic acid) system was investigated. The reaction of Cr(NO3)3 · 9H2O with heida at a specific pH (5.5) led to the isolation of a red crystalline (NH4)[Cr{HOCH2CH2N(CH2COO)2}2] · 2H2O (1), which was characterized by elemental analysis, spectroscopic, structural, thermal, and magnetic susceptibility studies. The structure of 1 reveals a mononuclear octahedral complex of Cr(III) with two doubly ionized heida ligands bound to it. The ligand alcoholic side chains do not participate in metal binding and dangle away from the complex. The structural and spectroscopic data emphasize the physicochemical properties of 1 in the solid state and in solution, thus reflecting the profile of 1 in the overall aqueous structural speciation scheme of the Cr(III)-heida system. The employed pH-specific synthetic endeavor exemplifies (a) the potential utility of the strategy in the exploration of key structural and chemical attributes of soluble aqueous species, arising from the biologically relevant interactions of Cr(III) with the O,N-containing ligands, and (b) the potential linkage of the chemical reactivity of Cr(III) toward the O,N-containing substrates of a variable structural composition with physiological processes or toxicity events.  相似文献   

11.
Ligands of the 2-pyridylcarbaldehyde isonicotinoylhydrazone class show high iron (Fe) sequestering efficacy and have potential as agents for the treatment of Fe overload disease. We have investigated the mechanisms responsible for their high activity. X-ray crystallography studies show that the tridentate chelate 2-pyridylcarbaldehyde isonicotinoylhydrazone undergoes an unexpected oxidation to isonicotinoyl(picolinoyl)hydrazine when complexed with FeIII. In contrast, in the absence of FeIII, the parent hydrazone is not oxidized in aerobic aqueous solution. To examine whether the diacylhydrazine could be responsible for the biological effects of 2-pyridylcarbaldehyde isonicotinoylhydrazone, their Fe chelation efficacy was compared. In contrast to its parent hydrazone, the diacylhydrazine showed little Fe chelation activity. Potentiometric titrations suggested that this might be because the diacylhydrazine was charged at physiological pH, hindering its access across membranes to intracellular Fe pools. In contrast, the Fe complex of this diacylhydrazine was charge neutral, which may allow facile movement through membranes. These data allow a model of Fe chelation for this compound to be proposed: the parent aroylhydrazone diffuses through cell membranes to bind Fe and is subsequently oxidized to the diacylhydrazine complex which then diffuses from the cell. Other diacylhydrazine analogues that were charge neutral at physiological pH demonstrated high Fe chelation efficacy. Thus, for this class of ligands, the charge of the chelator appears to be an important factor for determining their ability to access intracellular Fe. The results of this study are significant for understanding the biological activity of 2-pyridylcarbaldehyde isonicotinoylhydrazone and for the design of novel diacylhydrazine chelators for clinical use.  相似文献   

12.
Iron is a critical element for the survival of bacteria. We have designed and synthesized two novel 3-hydroxypyridin-4-one hexadentate ligands with high affinity for iron(III), which disrupt bacterial iron absorption. Biological studies demonstrate that these two chelators have significant inhibitory effect against both Gram-positive and Gram-negative bacteria, and therefore have potential as antimicrobial agents.  相似文献   

13.
A flavonol iron(III) complex, [Fe(flavonolato)(2)Cl(MeOH)], has been prepared. The compound has been characterized by X-ray crystallography, spectroscopy, magnetism and electronic paramagnetic resonance (EPR) at X- and Q-band. The geometrical environment around the metal is best described as rhombic distorted octahedral. This distortion has also been inferred from the magnetic measurements and from the EPR spectra at different temperatures, E/D(rhombicity parameter) approximately 0.06. The DNA cleavage activity of the iron(III) complex with and without ascorbate/hydrogen peroxide is reported. Mechanisms of the oxidative cleavage have been proposed when DNA strand scission is performed both with and without ascorbate/hydrogen peroxide activation.  相似文献   

14.
The trianionic heptadentate ligand, (Z)-3-(5′-chlorosalicylhydrazinocarbonyl) propenoic acid, has been synthesized and reacted with FeCl3·6H2O, to produce the complex [FeIII6(C12H8N2O5Cl)6(H2O)4(CH3OH)2]·8H2O·4CH3OH. In the self-assembly process the ligand was esterified and transferred into (Z)-methyl 3-(5′-chlorosalicylhydrazinocarbonyl) propenoate. In the crystal structure, the neutral Fe(III) complex contain a 18-membered metallacrown ring consisting of six Fe(III) and six trianionic ligands. The 18-membered metallacrown ring is formed by the succession of six structural moieties of the type [Fe(III)-N-N]. Due to the meridional coordination of the ligands to the Fe3+ ions, the ligands enforce the stereochemistry of the Fe3+ ions as a propeller configuration with alternating Λ/Δ forms. The metallacrown can be treated with SnCl2 or Zn powder to obtain purified ester.  相似文献   

15.
M. Barteri  B. Pispisa 《Biopolymers》1982,21(6):1093-1106
2,2,′,2″,2?-Tetrapyridineiron(III) complex ions anchored to poly(L -glutamate) (FeL) or poly(D -glutamate) (FeD) were used as catalysts for the H2O2 oxidation of L (+)-ascorbic acid at pH 7 and varying complex:polymer-residue molar ratios [C]/[P]. Evidence is produced that the reaction is a composite process reflecting contributions from parallel pathways, one of which corresponds to a catalytic route and is [H2O2]-independent and the other to an uncatalyzed electron-transfer process between the ascorbate anion and hydrogen peroxide. Stereospecific effects in the catalysis are observed on increasing the complex:polymer ratio, which corresponds to an increase of the amount of α-helical fraction in the polypeptide supports (xa). Thus, at [C]/[P] = 0.01 (xa < 0.05), kFeD/kFeL = 1.0; but at [C]/[P] = 0.20 (xa ≈ 0.70), kFeD/kFeL = 4.0 ± 0.5, kFeD and kFeL being the second-order rate constants of the electron-transfer reaction between the FeD or FeL isomer of the asymmetric catalyst and the L -ascorbate anion. The activation energies were found to increase markedly on going from the former to the latter complex:polymer ratio but, at the same time, to exhibit equal values with both enantiomeric catalysts. Stereoselectivity therefore appears to be an entropy-controlled process, arising from the conformational rigidity of the precursor complex, which very likely sees the substrate molecules bound to the chiral residues of the ordered polymer surrounding the active sites. The implications of the stereochemical features of the substrate–catalyst adduct on the mechanism of electron transfer are also discussed. Evidence is presented that the asymmetric [Fe(tetpy)(OH)2]+–polyelectrolyte systems play the additional role of environmental controller of the uncatalyzed oxidation of the L -ascorbate anion.  相似文献   

16.
The solution equilibria of iron(III) and aluminum(III) with two classes of hard ligands (catechol, salicylic acid and their nitro-derivatives) have been reliably studied by potentiometric, spectrophotometric and NMR spectroscopy. The effect of the nitro substituent on the binding properties of catechol and salicylic acid has been examined thoroughly. The inductive and resonance properties of the substituent that, as expected, lower the basicity of the phenolic and carboxylic groups, lead to a general decrease in both protonation and complex formation constants. This decrease causes an increase in pM of between 0.2 and 1.1 pM units for the nitro-substituted salicylates and of about 4 units for 4-nitrocatechol, with a significantly higher chelating efficacy. The influence of the substituent on catechol and salicylic acid is discussed in detail on the basis of conditional constants at pH 7.4.  相似文献   

17.
A novel macrocyclic hexanuclear iron(III) 18-azametallacrown-6 compound, [Fe6(C9H7N2O3)6(CH3OH)6]·8CH3OH·2H2O, has been prepared using a trianionic pentadentate ligand N-acetylsalicylhydrazide (ashz3−) and characterized by X-ray diffraction. Due to the meridional coordination of the ligand to the Fe3+ ion, the ligand enforces the stereochemistry of the Fe3+ ions as a propeller configuration with alternating Λ/Δ forms. The disc-shaped hexanuclear ring shows about 6.20 Å in diameter at entrance, about 9.31 Å at its largest diameter at the center of the cavity, respectively. There are many kinds of intramolecular and intermolecular hydrogen bonds in the title compound. The OH?O hydrogen bond distances range from 2.609(5)-2.901(5) Å. The magnetic susceptibility (4-275K) study indicates antiferromagnetic exchange interactions between the adjacent Fe3+ ions around the ring.  相似文献   

18.
The method of synthesizing acyclonucleoside iron chelators is both convenient and cost effective compared to that of synthesizing ribonucleoside iron chelators. The X-ray crystal structural analysis shows that the 2-hydroxyethoxymethyl group does not affect the geometry of the iron chelating sites. Therefore, the iron binding and removal properties of the acyclonucleoside iron chelators should remain similar to the ribonucleoside iron chelators, which is confirmed by the titration and competition reaction of the acyclonucleoside chelators with iron and ferritin, respectively. The acyclonucleoside iron chelators are more lipophilic with measured n-octanol and Tris buffer distribution coefficients than ribonucleoside iron chelators.  相似文献   

19.
In ferritin, iron is stored by oxidative deposition of the ferrous ion to form a hydrous ferric oxide mineral core. Two intermediates, formed during the initial stages of iron accumulation in apoferritin, have been observed previously in our laboratory and have been identified as a mononuclear Fe3(+)-protein complex and a mixed-valence Fe2(+)-Fe3(+)-protein complex. The physical characteristics of the mixed-valence Fe2(+)-Fe3+ complex and its relationship to the mononuclear Fe3+ complex in horse spleen apoferritin samples to which 0-240 iron atoms were added was examined by EPR spectroscopy. The results indicate that the mononuclear complex is not a precursor to the formation of the mixed-valence complex. Competitive binding studies with Cd2+, Zn2+, Tb3+, and UO2+(2) suggest that the mixed-valence complex is formed on the interior of the protein in the vicinity of the 2-fold axis of the subunit dimer. The mixed-valence complex could be generated by the partial oxidation of Fe2+ in apoferritin containing 120 Fe2+ or by the addition of up to 120 Fe2+ to ferritin already containing 18 Fe3+/protein molecule. The fact that the complex is generated during early Fe2+ oxidation suggests that it may be a key intermediate during the initial oxidative deposition of iron in the protein. The unusual EPR powder lineshape at 9.3 GHz of the mixed-valence complex was simulated with a rhombic g-tensor (gx = 1.95, gy = 1.88, gz = 1.77) and large linewidths and g-strain parameters. The presence of significant g-strain in the complex probably accounts for the failure to observe an EPR signal at 35 GHz and likely reflect considerable flexibility in the structure of the metal site. The temperature dependence of the EPR intensity in the range 8-38 K was modeled successfully by an effective spin Hamiltonian including exchange coupling (-2JS1.S2) and zero-field terms, from which an antiferromagnetic coupling of J = -4.0 +/- 0.5 cm-1 was obtained. This low value for J may reflect the presence of a mu-oxo bridge(s) in the dimer.  相似文献   

20.
M. Branca  M. E. Marini  B. Pispisa 《Biopolymers》1976,15(11):2219-2226
The binding process between sodium poly(L -glutamate) and trans-2,2′,2″,2?-tetrapyridyl-Fe(III) complex ions in aqueous solution at pH around 7 has been studied by means of equilibrium dialysis and optical measurements. The binding isotherm indicates the occurrence of a cooperative process, whereby bound molecules facilitate the association of additional molecules. According to circular dichroism (CD) data, this effect is coupled with that which sees a conformational change in the charged polypeptide upon progessive binding of complex counterions. All these features are discussed in the light of the structural characteristics of the interacting species. A stereochemical model of the association “complex” is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号