首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work was aimed at investigating the primary reactions of plant cell metabolism in response to salt stress. It was found that the phospholipase D regulatory enzyme is activated in wild-type and transgenic cax1 tobacco plants during the early stages of the influence of salt stress. We have shown that a disturbance in the intracellular homeostasis of calcium ions and oppression of phospholipase D activity decrease the resistance of tobacco plants under the influence of salinity and also indicate the involvement of such systems in signaling during stress adaptation of plants.  相似文献   

2.
Role of phospholipase D1 in neurite outgrowth of neural stem cells   总被引:2,自引:0,他引:2  
Employing neural stem cells from the brain cortex of E12 rat embryos, we investigated the possible role of phospholipase D (PLD) in the synaptogenesis and neurite formation of neural cells during differentiation. Expression level of PLD1 increased during neuronal differentiation of the neural stem cells, resulting in increased PLD activity. Expression level of synapsin I, a marker of synaptogenesis, also increased as the differentiation of neural stem cells progressed. To figure out the effect of PLD on synapsin I expression, we treated the neural stem cells with phorbol myristate acetate (PMA) to stimulate PLD activity. Increased PLD activity induced by PMA treatment resulted in elevated synapsin I expression and neurite outgrowth during neuronal differentiation. To further confirm the role of PLD in neurite outgrowth, we transfected the dominant-negative form of rat PLD1 cDNA (DN-rPLD1) into neural stem cells to downregulate PLD activity. Overexpression of DN-rPLD1 showed the complete inhibition of neurite outgrowth of neural stem cells under differentiation condition. While transfection of DN-rPLD1 did not affect the synapsin I expression, overexpression of rPLD1 resulted in increased synapsin I expression of the neural cells. These results suggest that PLD1 plays a critical role in neurite outgrowth during differentiation of the neural stem cells. In conclusion, this is the first evidence to show that PLD1 acts as an important regulator of neurite outgrowth in neural stem cell by promoting neuronal differentiation via increase of synapsin I expression.  相似文献   

3.
Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of T2 progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.  相似文献   

4.
Journal of Plant Research - The glyoxalase pathway is a check point to monitor the elevation of methylglyoxal (MG) level in plants and is mediated by glyoxalase I (Gly I) and glyoxalase II (Gly II)...  相似文献   

5.
Intracellular localization of phospholipase D1 in mammalian cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.  相似文献   

6.
Growth of wheat seedlings (Triticum aestivum L. cv. Mehran-89), in hydroponic culture, was affected by abscisic acid (ABA). Using salinity stress and exogenous ABA application (10-6 M) to enhance endogenous ABA level, the growth of roots was more suppressed than the growth of shoots. On the other hand, norflurazon, which inhibits ABA biosynthesis, reduced only the growth of shoots. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Role for phospholipase D in receptor-mediated endocytosis   总被引:12,自引:0,他引:12       下载免费PDF全文
In response to epidermal growth factor (EGF), the EGF receptor is endocytosed and degraded. A substantial lag period exists between endocytosis and degradation, suggesting that endocytosis is more than a simple negative feedback. Phospholipase D (PLD), which has been implicated in vesicle formation in the Golgi, is activated in response to EGF and other growth factors. We report here that EGF receptor endocytosis is dependent upon PLD and the PLD1 regulators, protein kinase C alpha and RalA. EGF-induced receptor degradation is accelerated by overexpression of either wild-type PLD1 or PLD2 and retarded by overexpression of catalytically inactive mutants of either PLD1 or PLD2. EGF-induced activation of mitogen-activated protein kinase, which is dependent upon receptor endocytosis, is also dependent upon PLD. These data suggest a role for PLD in signaling that facilitates receptor endocytosis.  相似文献   

8.
Inhibition of astrocyte proliferation has been suggested to be an important event in the developmental neurotoxicity associated with ethanol. We have previously shown that the acetylcholine analog carbachol induces astroglial cell proliferation through activation of muscarinic M3 receptors, and that ethanol strongly inhibits this effect by inhibiting activation of protein kinase C (PKC) zeta and its down-stream effector 70-kDa ribosomal S6 kinase (p70S6K). In this study, we investigated whether inhibition by ethanol of this signal transduction pathway in 1321N1 human astrocytoma cells may be due, at least in part, to inhibition of the formation of the PKC zeta activator phosphatidic acid (PA), which is formed by hydrolysis of phosphatidylcholine by phospholipase D (PLD). 1-Butanol, which is a substrate for PLD and inhibits PA formation, inhibited carbachol-induced cell proliferation and the underlying intracellular signaling, whereas its analog tert-butanol, which is a poor substrate for PLD, was much less effective. In addition, exogenous PAs were able to increase DNA synthesis and to activate PKC zeta and p70S6K. Furthermore, in carbachol-stimulated cells, ethanol increased the formation of phosphatidylethanol and inhibited the formation of PA. Taken together, these results indicate that PLD activation plays an important role in carbachol-induced astroglial cell proliferation by generating the second messenger PA, which activates PKC zeta. Moreover, the effect of ethanol on carbachol-induced proliferation appears to be mediated, at least in part, by its ability to interact with PLD leading to a decreased synthesis of PA.  相似文献   

9.
Lysophosphatidic acid (LPA) is a receptor-active lipid mediator with a broad range of biological effects. Ovarian cancer cells synthesize LPA, which promotes their motility, growth, and survival. We show that a murine homolog of a human protein previously reported to hydrolyze LPA is a highly selective detergent-stimulated LPA phosphatase that can be used to detect and quantitate LPA. Use of this protein in novel enzymatic assay demonstrates that SK-OV-3 ovarian cancer cells release physiologically relevant levels of biologically active LPA into the extracellular space. LPA release is markedly increased by nucleotide agonists acting through a P2Y4 purinergic receptor. Promotion of LPA formation by nucleotides is accompanied by stimulation of phospholipase D (PLD) activity. Overexpression of both PLD1 and PLD2 in SK-OV-3 cells produces active enzymes, but only overexpression of PLD2 results in significant amplification of both nucleotide-stimulated PLD activity and LPA production. SK-OV-3 cells express and secrete a phospholipase A2 activity that can generate LPA from the lipid product of PLD, phosphatidic acid. Our results identify a novel role for nucleotides in the regulation of ovarian cancer cells and suggest an indirect but critical function for PLD2 in agonist-stimulated LPA production.  相似文献   

10.
We have shown earlier that oxidant-induced activation of phospholipase D (PLD) in vascular endothelial cells (ECs) is regulated by protein tyrosine kinases. To further understand the regulation of oxidant-induced PLD activation, we investigated the role of Src kinase. Treatment of bovine pulmonary artery ECs (BPAECs) with a model oxidant, diperoxovanadate (DPV), at 5 microM concentration, for 30 min, stimulated PLD activity (four- to eightfold), which was attenuated by tyrosine kinase inhibitors and by Src kinase-specific inhibitors PP-1 and PP-2, in a dose- and time-dependent fashion. Furthermore, BPAECs exposed to DPV (5 microM) for 2 min showed activation of Src kinase as observed by increased tyrosine phosphorylation and autophosphorylation in Src immunoprecipitates, which was attenuated by PP-2. Src immunoprecipitates of cell lysates from control BPAECs exhibited PLD activity in cell-free preparations, which was Arf- and Rho-sensitive and was enhanced at 2 min of DPV (5 microM) treatment. Also, Western blots of Src immunoprecipitates of control cells revealed the presence of PLD(1) and PLD(2), suggesting the association of PLD with Src kinase under basal conditions. However, exposure of cells to DPV (5 microM) for 2 min enhanced the association of PLD(2) but not PLD(1) with Src. Western blotting of immunoprecipitates of PLD(1) and PLD(2) isoforms of control BPAECs revealed the presence of Src under basal conditions and exposure of cells to DPV (5 microM) for 2 min enhanced the association of PLD(2) with Src in PLD(2) immunoprecipitates. Transient expression of a dominant negative mutant of Src in BPAECs attenuated DPV- but not TPA-induced PLD activation. In cell-free preparations, Src did not phosphorylate either PLD(1) or PLD(2) compared to protein kinase Calpha or p38 mitogen-activated protein kinase. These data show for the first time a direct association of Src with PLD in ECs and regulation of PLD in intact cells.  相似文献   

11.
The response of antioxidant enzymes to cyclic drought was studied in control non-transformed tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) and two types of transgenic Pssu-ipt tobacco (grafted on wild rootstock and poorly rooted progeny of F1 generation) grown under different conditions of irradiation (greenhouse, referred as high light, versus growth chamber, referred as low light). Water stress cycles started with plants at two contrasting developmental stages, i.e., at the stage of vegetative growth (young) and at the onset of flowering (old). Drought reduced the growth of SR1 plants compared with transgenic ones, particularly, when treatment started in earlier stage of plant development. Relative leaf water content was significantly lower (below 70%) in all transgenic grafts and plants compared with the wild type, irrespective of age, drought, and growth conditions. The response of antioxidant enzymes was significantly dependent on plant type and plant age; nevertheless, growth conditions and water stress also affected enzyme activities. Contrary to non-transgenic tobacco, where about half of glutathione reductase activity was found in older plants, both transgenic types exhibited unchanged activities throughout plant development and stress treatment. No differences were found in catalase activity, although the growth in the greenhouse caused a moderate increase in all older plants. In contrast to non-transgenic and Pssu-ipt rooted plants, peroxidase activities (ascorbate, guaiacol, and syringaldazine peroxidase) in older Pssu-ipt grafts were up to four times higher, irrespective of growth and stress, nevertheless, the effect seemed to be age-dependent. Superoxide dismutase (SOD) activity was affected particularly by plant age but also by growth conditions. Unlike in older plants, water stress caused an increase of SOD activities in all younger plants. The differences observed in activities of enzymes of intermediary metabolism (i.e., malic enzyme and glucose-6-phosphate dehydrogenase) revealed that transgenic grafts probably compensated differently for a decrease of ATP and NADPH than control and transgenic rooted plants under stress.  相似文献   

12.
Lu YB  Zhou HL 《生理科学进展》2001,32(2):121-124
磷脂酶D(phsopholipaseD,PLD)水解其主要底物磷脂酰胆碱是细胞信号转导的重要途径之一。大量研究表明PLD激活是受体介导的胞吞和胞吐过程中关键的一步。本文主要介绍PLD在受体介导的胞吞和胞吐过程中的作用及作用机制的研究发展。  相似文献   

13.
Diacylglycerol metabolism in phospholipase C-treated mammalian cells   总被引:2,自引:0,他引:2  
Treatment of cultured cells with phospholipase C causes increased rates of hydrolysis of cellular phosphatidylcholine and increased rates of incorporation of choline into phosphatidylcholine. The fate of the diacylglycerol produced by the phospholipase C hydrolysis was examined in two cell lines, Chinese hamster ovary and HeLa. In the former cells, turnover of the glycerol moiety of phosphatidylcholine was not enhanced by phospholipase C treatment, indicating that the phospholipase C-generated diacylglycerol was recycled into new phosphatidylcholine. In HeLa cells, turnover of the glycerol backbone of phosphatidylcholine was enhanced by phospholipase C treatment, and the increased rate of turnover of the glycerol moiety was similar to that of the phosphate moiety. Thus, the fate of diacylglycerol generated at the plasma membrane was demonstrated to differ in these two cell lines. Incorporation of precursors of diacylglycerol into phosphatidylcholine was not enhanced by phospholipase C treatment in either cell line.  相似文献   

14.
15.
Glycine betaine is an osmoprotectant found in many organisms, including bacteria and higher plants. The bacterium Escherichia coli produces glycine betaine by a two-step pathway where choline dehydrogenase (CDH), encoded by betA, oxidizes choline to betaine aldehyde which is further oxidized to glycine betaine by the same enzyme. The second step, conversion of betaine aldehyde into glycine betaine, can also be performed by the second enzyme in the pathway, betaine aldehyde dehydrogenase (BADH), encoded by betB. Transformation of tobacco (Nicotiana tabacum), a species not accumulating glycine betaine, with the E. coli genes for glycine betaine biosynthesis, resulted in transgenic plants accumulating glycine betaine. Plants producing CDH were found to accumulate glycine betaine as did F1 progeny from crosses between CDH- and BADH-producing lines. Plants producing both CDH and BADH generally accumulated higher amounts of glycine betaine than plants producing CDH alone, as determined by 1H NMR analysis. Transgenic tobacco lines accumulating glycine betaine exhibited increased tolerance to salt stress as measured by biomass production of greenhouse-grown intact plants. Furthermore, experiments conducted with leaf discs from glycine betaine-accumulating plants indicated enhanced recovery from photoinhibition caused by high light and salt stress as well as improved tolerance to photoinhibition under low temperature conditions. In conclusion, introduction of glycine betaine production into tobacco is associated with increased stress tolerance probably partly due to improved protection of the photosynthetic apparatus.  相似文献   

16.
Previous work with model transgenic plants has demonstrated that cellular accumulation of mannitol can alleviate abiotic stress. Here, we show that ectopic expression of the mtlD gene for the biosynthesis of mannitol in wheat improves tolerance to water stress and salinity. Wheat (Triticum aestivum L. cv Bobwhite) was transformed with the mtlD gene of Escherichia coli. Tolerance to water stress and salinity was evaluated using calli and T(2) plants transformed with (+mtlD) or without (-mtlD) mtlD. Calli were exposed to -1.0 MPa of polyethylene glycol 8,000 or 100 mM NaCl. T(2) plants were stressed by withholding water or by adding 150 mM NaCl to the nutrient medium. Fresh weight of -mtlD calli was reduced by 40% in the presence of polyethylene glycol and 37% under NaCl stress. Growth of +mtlD calli was not affected by stress. In -mtlD plants, fresh weight, dry weight, plant height, and flag leaf length were reduced by 70%, 56%, 40%, and 45% compared with 40%, 8%, 18%, and 29%, respectively, in +mtlD plants. Salt stress reduced shoot fresh weight, dry weight, plant height, and flag leaf length by 77%, 73%, 25%, and 36% in -mtlD plants, respectively, compared with 50%, 30%, 12%, and 20% in +mtlD plants. However, the amount of mannitol accumulated in the callus and mature fifth leaf (1.7-3.7 micromol g(-1) fresh weight in the callus and 0.6-2.0 micromol g(-1) fresh weight in the leaf) was too small to protect against stress through osmotic adjustment. We conclude that the improved growth performance of mannitol-accumulating calli and mature leaves was due to other stress-protective functions of mannitol, although this study cannot rule out possible osmotic effects in growing regions of the plant.  相似文献   

17.

Key message

PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway.

Abstract

Calcium (Ca2+) plays important role in growth, development and stress tolerance in plants. Cellular Ca2+ homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca2+ chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca2+-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca2+-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca2+ homeostasis which in turn modulates ROS machinery providing indirect link between Ca2+ and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better understanding of the significance of calcium signaling in phloem tissue leading to salinity stress tolerance.
  相似文献   

18.
Transported l-[(35)S]cysteine was rapidly metabolized by cultured tobacco cells when supplied to the cells at 0.02 millimolar or 0.5 millimolar. The internal cysteine pool was expandable to approximately 2400 nmoles per gram fresh weight.The (35)S label derived from cysteine was found in several metabolites. The amount of label in glutathione and sulfate was directly proportional to the internal l-[(35)S]cysteine, while the levels of labeled methionine and protein were apparently independent of internal labeled cysteine. Cysteine was more rapidly metabolized when the external cysteine concentration was low (0.02 millimolar) with up to 90% of the (35)S label present as compounds other than cysteine.The initial step in cysteine degradation yielded pyruvate, sulfide, and presumably NH(4) (+). Stoichiometry studies using extracts prepared from acetone powders of tobacco cells indicated that pyruvate and sulfide were produced in a 1:1 ratio. The catabolic reaction was linear with respect to time and amount of protein and had a pH optimum of 8 in crude extracts. Preliminary kinetic data indicated the K(m) to be approximately 0.2 millimolar. The extractable degradative activity was enhanced 15- to 20-fold by preincubating the cells for 24 hours in 0.5 millimolar cysteine. The extractable specific enzyme activity roughly reflected the growth curve of the cells in culture. Maximal cysteine degradation was observed in extracts prepared from late log phase cultures that were preincubated in cysteine, while little activity was found in similar extracts from stationary phase cultures. These results are consistent with an inducible catabolic enzyme similar to the cysteine desulfhydrase from bacteria.  相似文献   

19.

Key message

Overexpression of CsHis in tobacco promoted chromatin condensation, but did not affect the phenotype. It also conferred tolerance to low-temperature, high-salinity, ABA, drought and oxidative stress in transgenic tobacco.

Abstract

H1 histone, as a major structural protein of higher-order chromatin, is associated with stress responses in plants. Here, we describe the functions of the Camellia sinensis H1 Histone gene (CsHis) to illustrate its roles in plant responses to stresses. Subcellular localization and prokaryotic expression assays showed that the CsHis protein is localized in the nucleus, and its molecular size is approximately 22.5 kD. The expression levels of CsHis in C. sinensis leaves under various conditions were investigated by qRT-PCR, and the results indicated that CsHis was strongly induced by various abiotic stresses such as low-temperature, high-salinity, ABA, drought and oxidative stress. Overexpression of CsHis in tobacco (Nicotiana tabacum) promoted chromatin condensation, while there were almost no changes in the growth and development of transgenic tobacco plants. Phylogenetic analysis showed that CsHis belongs to the H1C and H1D variants of H1 histones, which are stress-induced variants and not the key variants required for growth and development. Stress tolerance analysis indicated that the transgenic tobacco plants exhibited higher tolerance than the WT plants upon exposure to various abiotic stresses; the transgenic plants displayed reduced wilting and senescence and exhibited greater net photosynthetic rate (Pn), stomatal conductance (Gs) and maximal photochemical efficiency (Fv/Fm) values. All the above results suggest that CsHis is a stress-induced gene and that its overexpression improves the tolerance to various abiotic stresses in the transgenic tobacco plants, possibly through the maintenance of photosynthetic efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号