首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mobility of maize transposable element Activator (Ac) is dependent on the 11-bp terminal inverted repeats (IRs) and approximately 250 subterminal nucleotides at each end. These sequences flank the coding region for the transposase (TPase) protein, which is required for the transposition reaction. Here we show that Ac TPase has a bipartite DNA binding domain, and recognizes the IRs and subterminal sequences in the Ac ends. TPase binds cooperatively to repetitive ACG and TCG sequences, of which 25 copies are found in the 5′ and 20 copies in the 3′ subterminal regions. TPase affinity is highest when these sites are flanked on the 3′ side by an additional G residue (A/TCGG), which is found at 75% of binding sites. Moreover, TPase binds specifically to the Ac IRs, albeit with much lower affinity. Two mutations within the IRs that immobilize Ac abolish TPase binding completely. The basic DNA binding domain of TPase is split into two subdomains. Binding to the subterminal motifs is accomplished by the C-terminal subdomain alone, whereas recognition of the IRs requires the N-terminal subdomain in addition. Furthermore, TPase is extremely flexible in DNA binding. Two direct or inverted binding sites are bound equally well, and sites that are five to twelve bases apart are similarly well bound. The consequences of these findings for the Ac transposition reaction are discussed.  相似文献   

2.
 The mobility of maize transposable element Activator (Ac) is dependent on the 11-bp terminal inverted repeats (IRs) and approximately 250 subterminal nucleotides at each end. These sequences flank the coding region for the transposase (TPase) protein, which is required for the transposition reaction. Here we show that Ac TPase has a bipartite DNA binding domain, and recognizes the IRs and subterminal sequences in the Ac ends. TPase binds cooperatively to repetitive ACG and TCG sequences, of which 25 copies are found in the 5′ and 20 copies in the 3′ subterminal regions. TPase affinity is highest when these sites are flanked on the 3′ side by an additional G residue (A/TCGG), which is found at 75% of binding sites. Moreover, TPase binds specifically to the Ac IRs, albeit with much lower affinity. Two mutations within the IRs that immobilize Ac abolish TPase binding completely. The basic DNA binding domain of TPase is split into two subdomains. Binding to the subterminal motifs is accomplished by the C-terminal subdomain alone, whereas recognition of the IRs requires the N-terminal subdomain in addition. Furthermore, TPase is extremely flexible in DNA binding. Two direct or inverted binding sites are bound equally well, and sites that are five to twelve bases apart are similarly well bound. The consequences of these findings for the Ac transposition reaction are discussed. Received: 3 June 1996 / Accepted: 29 July 1996  相似文献   

3.
Tc1 is a transposon present in several copies in the genome of all natural isolates of the nematode C.elegans; it is actively transposing in many strains. In those strains Tc1 insertion is the main cause of spontaneous mutations. The transposon contains one large ORF that we call TcA; we assume that the TcA protein is the transposase of Tc1. We expressed TcA in E.coli, purified the protein and showed that it has a strong affinity for DNA (both single stranded and double stranded). A fusion protein of beta-galactosidase and TcA also exhibits DNA binding; deletion derivatives of this fusion protein were tested for DNA binding. A deletion of 39 amino acids at the N-terminal region of TcA abolishes the DNA binding, whereas a deletion of 108 C-terminal amino acids does not affect DNA binding. This shows that the DNA binding domain of TcA is near the N-terminal region. The DNA binding capacity of TcA supports the assumption that TcA is a transposase of Tc1.  相似文献   

4.
5.
6.
7.
Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retroviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 [Zn(HIV1-F2)]. Unlike results obtained for the first retroviral-type zinc finger peptide, Zn(HIV1-F1), [Summers et al. (1990) Biochemistry 29, 329], broad signals indicative of conformational lability were observed in the 1H NMR spectrum of Zn-(HIV1-F2) at 25 degrees C. The NMR signals narrowed upon cooling to -2 degrees C, enabling complete 1H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were used to generate 30 distance geometry (DG) structures with penalties (penalty = sum of the squared differences between interatomic distances defined in the restraints file and in the DG structures) in the range 0.02-0.03 A2. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. Superposition of the backbone atoms (C, C alpha, N) for residues C(1)-C(14) gave pairwise RMSD values in the range 0.16-0.75 A. The folding of Zn(HIV1-F2) is very similar to that observed for Zn(HIV1-F1). Small differences observed between the two finger domains are localized to residues between His(9) and Cys(14), with residues M(11)-C(14) forming a 3(10) helical corner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Clp ATPases are unique chaperones that promote protein unfolding and subsequent degradation by proteases. The mechanism by which this occurs is poorly understood. Here we demonstrate that the N-terminal domain of ClpX is a C4-type zinc binding domain (ZBD) involved in substrate recognition. ZBD forms a very stable dimer that is essential for promoting the degradation of some typical ClpXP substrates such as lambdaO and MuA but not GFP-SsrA. Furthermore, experiments indicate that ZBD contains a primary binding site for the lambdaO substrate and for the cofactor SspB. Removal of ZBD from the ClpX sequence renders the ATPase activity of ClpX largely insensitive to the presence of ClpP, substrates, or the SspB cofactor. All these results indicate that ZBD plays an important role in the ClpX mechanism of function and that ATP binding and/or hydrolysis drives a conformational change in ClpX involving ZBD.  相似文献   

9.
10.
The doublesex gene of Drosophila melanogaster is the final member of a well characterized hierarchy of genes that controls somatic sex determination and differentiation. The male-specific and female-specific doublesex polypeptides occupy a terminal position in the hierarchy, and thus regulate those genes responsible for the development of sexually dimorphic characteristics of the fly. To investigate the molecular mechanism by which these two related proteins interact with specific target genes, we have identified and characterized their DNA binding domains. Using gel mobility shift experiments with sequentially deleted polypeptides, site-directed mutagenesis and spectrophotometric assays, we have shown that the two doublesex proteins share a common and novel zinc finger-related DNA binding domain distinct from any reported class of zinc binding proteins. We have further shown that of 10 null dsx alleles, six encode proteins deficient in DNA binding activity, and that three of these alleles are the result of mutations that alter cysteine and histidine residues in the metal binding domain. Our results provide evidence that both the male-specific and female-specific doublesex proteins share and depend upon the same DNA binding domain for function in vivo, suggesting that both proteins bind to, but differentially regulate, a common set of genes in both sexes.  相似文献   

11.
12.
J C Vos  R H Plasterk 《The EMBO journal》1994,13(24):6125-6132
The Tc1 transposon of Caenorhabditis elegans is a member of the Tc1/mariner family of mobile elements. These elements have inverted terminal repeats that flank a single transposase gene. Here we show that Tc1 transposase, Tc1A, has a bipartite DNA binding domain related to the paired domain of mammalian and Drosophila genes. Both the DNA binding domain of Tc1A and the DNA binding site in the inverted repeat of Tc1 can be divided into two subdomains. Methylation interference studies demonstrate adjacent minor and major groove contacts at the inner part of the binding site by the N-terminal 68 amino acids of the DNA binding domain. In addition, Tc1A amino acids 69-142 are essential for major groove contacts at the outer part of the binding site. Recombinant Tc1A is found to be able to introduce a single strand nick at the 5' end of the transposon in vitro. Furthermore, Tc1A can mediate a phosphoryl transfer reaction. A mutation in a DDE motif abolishes both endonucleolytic and phosphoryl transfer activities, suggesting that Tc1A carries a catalytic core common to retroviral integrases and IS transposases.  相似文献   

13.
HS1 is a protein involved in erythroid proliferation and apoptotic cell death, containing several structurally significant motifs including a C-terminal SH3 domain. HPK1 is a member of the Ste20-related kinase family, which contains four proline-rich sequences and is constitutively associated with HS1 in hematopoietic cells. Recombinant fusion protein GST-SH3HS1 was expressed to assess the binding properties of 16 peptides derived from the HPK1 proline-rich regions. The binding affinities were determined by non-immobilized ligand interaction assay by circular dichroism. Our results revealed that the classical PxxPxK class II binding motif is not sufficient to induce the interaction with the GST-SH3HS1 domain, an event dependent on the presence of additional basic residue(s) located at the C-terminus of the PxxPxK motif: Lys−5 in P2 peptide and Lys−8 in P4c peptide. Lys replacement by Arg residues decreases the ligand binding affinity. The finding that both SH3HS1 domain and full-length HS1 protein bind to P2 peptide with similar affinity demonstrates that the whole protein sequence does not affect the interaction properties of the domain. In silico models of SH3HS1 as a complex with P2 or P4c highlight the domain residues that interact with the recognition determinants of the peptide ligand and that cooperate in the complex stabilization.  相似文献   

14.
Mariner-like elements are widespread eukaryotic transposons, but Mos-1 is the only natural element that is known to be active. Little is known about the biochemistry of mariner transposition. The first step in the process is the binding of the transposase to the 5' and 3' inverted terminal repeats (ITRs) of the element. Using the 3' ITR of the element, we have determined the binding properties of a recombinant Mos-1 transposase produced in bacteria, and we have used deletion derivatives to localize the minimal ITR binding domain between amino acids 1 and 141. Its features and structure indicate that it differs from the ITR binding domain of the transposase encoded by Tc1-related elements.  相似文献   

15.
16.
Rev1 is a eukaryotic DNA polymerase of the Y family involved in translesion synthesis (TLS), a major damage tolerance pathway that allows DNA replication at damaged templates. Uniquely amongst the Y family polymerases, the N-terminal part of Rev1, dubbed the BRCA1 C-terminal homology (BRCT) region, includes a BRCT domain. While most BRCT domains mediate protein-protein interactions, Rev1 contains a predicted α-helix N-terminal to the BRCT domain and in human Replication Factor C (RFC) such a BRCT region endows the protein with DNA binding capacity. Here, we studied the DNA binding properties of yeast and mouse Rev1. Our results show that the BRCT region of Rev1 specifically binds to a 5' phosphorylated, recessed, primer-template junction. This DNA binding depends on the extra α-helix, N-terminal to the BRCT domain. Surprisingly, a stretch of 20 amino acids N-terminal to the predicted α-helix is also critical for high-affinity DNA binding. In addition to 5' primer-template junction binding, Rev1 efficiently binds to a recessed 3' primer-template junction. These dual DNA binding characteristics are discussed in view of the proposed recruitment of Rev1 by 5' primer-template junctions, downstream of stalled replication forks.  相似文献   

17.
Cys(2)-His(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules. They are expected to elevate the DNA binding affinity and specificity by increasing the number of finger modules. To investigate the relation between the number and the DNA binding affinity of the zinc finger, we have designed the two- to four-finger peptides by connecting the central zinc finger (finger 2) of Sp1 with the canonical linker sequence, Thr-Gly-Glu-Lys-Pro. Gel mobility shift assays reveal that the cognate three- and four-finger peptides, Sp1(zf222) and Sp1(zf2222), strongly bind to the predicted target sequences, but the two-finger peptide, Sp1(zf22), does not. Of special interest is the fact that the dissociation constant for Sp1(zf2222) binding to the target DNA is comparable to that for Sp1(zf222). The methylation interference, DNase I and hydroxyl radical footprintings, and circular permutation analyses demonstrate that Sp1(zf2222) binds to its target site with three successive zinc fingers and the binding of the fourth zinc finger is inhibited by DNA bending induced by the binding of the three-finger domain. The present results strongly indicate that the zinc finger protein binds to DNA by the three-finger domain as one binding unit. In addition, this information provides the basis for the design of a novel multifinger protein with high affinity and specificity for long DNA sequences, such as chromosomal DNAs.  相似文献   

18.
The Arabidopsis thaliana tandem zinc finger 1 (AtTZF1) protein is characterized by two tandem‐arrayed CCCH‐type zinc fingers. We have previously found that AtTZF1 affects hormone‐mediated growth, stress and gene expression responses. While much has been learned at the genetic and physiological level, the molecular mechanisms underlying the effects of AtTZF1 on gene expression remain obscure. A human TZF protein, hTTP, is known to bind and trigger the degradation of mRNAs containing AU‐rich elements (AREs) at the 3′ untranslated regions. However, while the TZF motif of hTTP is characterized by CX8CX5CX3H‐X18‐CX8CX5CX3H, AtTZF1 contains an atypical motif of CX7CX5CX3H‐X16‐CX5CX4CX3H. Moreover, the TZF motif of AtTZF1 is preceded by an arginine‐rich (RR) region that is unique to plants. Using fluorescence anisotropy and electrophoretic mobility shift binding assays, we have demonstrated that AtTZF1 binds to RNA molecules with specificity and the interaction is dependent on the presence of zinc. Compared with hTTP, in which TZF is solely responsible for RNA binding, both TZF and RR regions of AtTZF1 are required to achieve high‐affinity RNA binding. Moreover, zinc finger integrity is vital for RNA binding. Using a plant protoplast transient expression analysis we have further revealed that AtTZF1 can trigger the decay of ARE‐containing mRNAs in vivo. Taken together, our results support the notion that AtTZF1 is involved in RNA turnover.  相似文献   

19.
S Feldmar  R Kunze 《The EMBO journal》1991,10(13):4003-4010
Ac encodes the 807 amino acid ORFa protein which binds specifically to multiple AAACGG motifs that are subterminally located in both ends of Ac. The wild-type ORFa protein and a number of deletion and amino acid exchange mutants were expressed in Escherichia coli, renatured and used for mobility shift assays. At least 136 amino acids from the N-terminus and 537 C-terminal amino acids may be removed from the ORFa protein without destroying the DNA binding domain, whereas a protein starting at amino acid 189 is DNA binding deficient. Certain basic amino acids between positions 190 and 200 are essential for DNA binding, as their substitution with uncharged amino acids leads to the loss of this function. The DNA binding domain of ORFa protein has an overall basic character, but no obvious sequence homology to any other known DNA binding protein. The homologies to the major open reading frames of transposable elements Tam3 from Antirrhinum majus and Hobo from Drosophila are found between the C-terminal two thirds of the three proteins. The ORFa protein forms discrete complexes with target DNA that appear, depending on the protein concentration, as a 'ladder' of bands on gels, indicating the occupation of target DNA by multiple ORFa protein molecules.  相似文献   

20.
The structure of a CCHHC zinc-binding domain from neural zinc finger factor-1 (NZF-1) has been determined in solution though the use of NMR methods. This domain is a member of a family of domains that have the Cys-X(4)-Cys-X(4)-His-X(7)-His-X(5)-Cys consensus sequence. The structure determination reveals a novel fold based around a zinc(II) ion coordinated to three Cys residues and the second of the two conserved His residues. The other His residue is stacked between the metal-coordinated His residue and a relatively conserved aromatic residue. Analysis of His to Gln sequence variants reveals that both His residues are required for the formation of a well-defined structure, but neither is required for high-affinity metal binding at a tetrahedral site. The structure suggests that a two-domain protein fragment and a double-stranded DNA binding site may interact with a common two-fold axis relating the two domains and the two half-sites of the DNA-inverted repeat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号