首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hackl EV  Blagoi YP 《Biopolymers》2005,77(6):315-324
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.  相似文献   

2.
Using methods of IR spectroscopy, light scattering, gel-electrophoresis DNA structural transitions are studied under the action of Cu2+, Zn2+, Mn2+, Ca2+ and Mg2+ ions in aqueous solution. Cu2+, Zn2+, Mn2+ and Ca2+ ions bind both to DNA phosphate groups and bases while Mg2+ ions-only to phosphate groups of DNA. Upon interaction with divalent metal ions studied (except for Mg2+ ions) DNA undergoes structural transition into a compact form. DNA compaction is characterized by a drastic decrease in the volume occupied by DNA molecules with reversible formation of DNA dense particles of well-defined finite size and ordered morphology. The DNA secondary structure in condensed particles corresponds to the B-form family. The mechanism of DNA compaction under Mt2+ ion action is not dominated by electrostatics. The effectiveness of the divalent metal ions studied to induce DNA compaction correlates with the affinity of these ions for DNA nucleic bases: Cu2+>Zn2+>Mn2+>Ca2+>Mg2+. Mt2+ ion interaction with DNA bases (or Mt2+ chelation with a base and an oxygen of a phosphate group) may be responsible for DNA compaction. Mt2+ ion interaction with DNA bases can destabilize DNA causing bends and reducing its persistent length that will facilitate DNA compaction.  相似文献   

3.
Interaction of alpha-lactalbumin with Cu2+   总被引:1,自引:0,他引:1  
It has been shown by intrinsic fluorescence spectroscopy that alpha-lactalbumin has several Cu2+ -binding sites per molecule. The Ca2+ -loaded protein binds two or more Cu2+ per molecule with an association constant of about 3 X 10(3) M-1. Apo-alpha-lactalbumin binds one Cu2+ per molecule with association constant 8 X 10(4) M-1 and from two to three Cu2+ with an association constant of about 4 X 10(3) M-1. The results obtained from spectrofluorometric pH titration of alpha-lactalbumin in the acidic pH region show the possible involvement of histidine residues in the coordination of Cu2+. The binding of Cu2+ to alpha-lactalbumin lowers significantly its thermostability and stability towards urea denaturation. The stability of Cu2+, Ca2+-alpha-lactalbumin against thermal and urea denaturation is similar to that of the apo protein. The thermal transition in Cu2+, Ca2+-alpha-lactalbumin occurs within the region of physiological temperatures which may suggest the existence of some thermal regulation of its functioning in vivo.  相似文献   

4.
Interactions of the calcium binding proteins, parvalbumin from cod muscles, alpha-lactalbumin from cow milk and calmodulin from bovine brain, with Cu2+ and Zn2+ ions have been studied by intrinsic fluorescence and microcalorimetry methods. It was revealed that parvalbumin binds one Cu2+ ion per molecule with association constant from 10(5) to 10(6) M-1. Zn2+ ions seem to compete for the same site which does not coincide with the two Ca2+ and Mg2+ binding sites. alpha-Lactalbumin contains from 2 to 4 Cu2+ and Zn2+ binding sites, the number and affinities of which depend on Ca2+ concentration. Calmodulin has similar Cu2+ and Zn2+ binding sites. The binding of Cu2+ and Zn2+ ions to parvalbumin and alpha-lactalbumin changes the shape and position of their thermal denaturation transitions. The results obtained together with the literature data show that the ability to interact with Cu2+ and Zn2+ ions is a property inherent to many calcium-binding proteins, which may play a physiological role for some of them.  相似文献   

5.
The interaction of Ag+ with DNA immobilized in polyacrylamide gel was studied by means of the ion-exchange method. Ag+ ions are shown to bind to DNA bases, their charges being neutralized by phosphate groups. The binding sites of Ag+ and H+ are likely to be the same, but the strength of Ag+ binding is greater than that of H+. Ag+ ions like H+ are shown to cause the formation of compact structures in immobilized DNA, the amount of these structures being dependent on subtle differences in DNA samples. DNA samples, not forming compact structures under the influence of H+, do not form them under the influence of Ag+. This fact can indicate the similarity of the mechanisms of the compact structures formation in both cases. The results obtained are compared with the data available for the interaction of Ag+ with DNA in solution. The mechanism of the Ag+-DNA interaction is discussed.  相似文献   

6.
Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a Kd for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.  相似文献   

7.
Ca2+-Mg2+-dependent deoxyribonuclease (deoxyribonucleate-5'-oligonucleotidehydrolase E. C. 3.1.4.5). Molecular weight of the enzyme is found to be 40 000 daltons isoelectric point--4.4. The enzyme degraded DNA only in the presence of bivalent cations. It hydrolyses preferentially native DNA with pH optimum 7.0-7.2 in the presence of Mg2+ ions. Ca2+ ions shift the pH optimum to 8.0-8.5. Combined addition of Ca2+ and Mg2+ ions results in a sinergic effect and changes the enzyme specificity to the secondary DNA structure. The enzyme hydrolyses both native and denatured DNA by the endonucleolytic type to form oligonucleotides with 5' terminal phosphate the content of tetra-octanucleotides being 80-85%.  相似文献   

8.
Thermal denaturation of porcine pancreatic elastase was studied by difference spectrophotometry. At 293 nm, and pH 8.0, the thermal transition of elastase occurs with a midpoint temperature (Tm) of (58.0 +/- 0.5) degrees C. Mg2+ and Ca2+ stabilize the native form in increasing the midpoint temperature of the transition, Ca2+ being more effective than Mg2+ in the 0-0.02 M concentration range. Furthermore, Ca2+ protects pancreatic elastase against the destabilizing effect of Cu2+. Whatever be the temperature between 40 degrees C and 55 degrees C, Ca2+ protects pancreatic elastase against loss of enzymatic activity.  相似文献   

9.
The DNA conformation was studied at different relation between Na+ and Me2+ (Mn2+ or Mg2+) ions in solution at the fixed total ionic strength mu. At low mu the intrinsic viscosity of DNA [eta] decreased to the limited fixed value with the increasing of Mn2+ or Mg2+ concentration (CMe2+). At higher mu greater than or equal to 0.1 M [eta] doesn't depend on CMe2+. The presence of Mn2+ in solution caused a decrease of the optical anisotropy of DNA and the value of epsilon 260 (p) independent on ionic strengths. In contrary, these parameters of DNA didn't change in solution with Mg2+-concentration. The observed differences in the effects of Mn2+ and Mg2+ on the optical properties of the macromolecule suggest that there are different modes of binding of these ions to DNA. It has been concluded, that Mn2+ interacts with bases and phosphate groups of DNA, but Mg2+--only with phosphates. The persistence length of DNA doesn't depend on Me2+ concentration under the conditions of the experiment (mu greater than or equal to 0.005 M).  相似文献   

10.
Vibrational circular dichroism (VCD) spectroscopy and simultaneous IR absorption measurements are applied to study the interaction of natural calf thymus DNA with Cu2+ ions at room temperature in a Cu2+ concentration range of 0-0.4M (a Cu2+/phosphate molar ratio [Cu]/[P] of 0-0.7). In some important instances, VCD provides more detailed insights than previous IR investigations whereas in several others it leads to the same interpretations. The Cu2+ ions bind to phosphate groups at a low metal concentration. Upon increasing the ion concentration, chelates are formed in which Cu2+ binds to the N7 of guanine (G) and a phosphate group. Detectable only by VCD, significant distortion of most guanine-cytosine (GC) base pairs occurs at a [Cu]/[P] ratio of 0.5 with only a minor affect on adenine-thymine (AT) base pairs, which favors a "sandwich" complex in which a Cu2+ ion is inserted between two adjacent guanines in a GpG sequence. The AT base pairs become significantly distorted when the metal concentration is increased to 0.7 [Cu]/[P]. A number of GC base pairs, which are possibly involved in sandwich complexes, remain stacked and paired even at 0.7 [Cu]/[P], preventing complete strand separation. The DNA secondary structure changes considerably from the standard B-form geometry at a [Cu]/[P] ratio of 0.4 and higher. A further transition to some intermediate conformation that is inconsistent with either the A- or Z-form or a completely denatured state is suggested in agreement with other works. In general, VCD proves to be a reliable indicator of the 3-dimensional structure of the DNA-metal ion complexes, which reveals structural details that cannot be deduced from the IR absorption spectra alone.  相似文献   

11.
The phosphorylation of the whole troponin complex and of the cardiac and skeletal troponin components by Ca2+-phospholipid-dependent protein kinase was studied. The activity of enzyme isolated from rat brain by ion-exchange chromatography on DEAE-Sephadex and by affinity chromatography on phosphatidylserine immobilized on polyacrylamide gel was shown to be completely dependent on Ca2+ and phospholipids and was equal to 0.4-0.6 mumol of phosphate/min.mg protein with histone H1 as substrate. The resulting preparation of Ca2+-phospholipid-dependent protein kinase was able to phosphorylate the isolated troponin I; the amount of phosphate transferred per mol of cardiac and skeletal troponin I was equal to 1.1 and 0.4, respectively. The maximal degree of phosphorylation of isolated troponin T by Ca2+-phospholipid-dependent protein kinase was 0.6 mol of phosphate per mol of troponin T both for skeletal and cardiac proteins. The rate and degree of phosphorylation were independent of the initial level of troponin T phosphorylation. Ca2+-phospholipid-dependent protein kinase did not phosphorylate the first serine residue of troponin T, i.e., the site which was phosphorylated in the highest degree after isolation of troponin T from skeletal muscles. The data obtained and the fact that the rate and degree of phosphorylation of troponins I and T within the whole troponin complex are 10-20 times less than those for isolated components provide little evidence for the participation of protein kinase C in troponin phosphorylation in vivo.  相似文献   

12.
The interaction of Mg2+, Ca2+, Zn2+, and Cd2+ with calf thymus DNA has been investigated by Raman spectroscopy. These spectra reveal that all of these ions, and particularly Zn2+, bind to phosphate groups of DNA, causing a slight structural change in the polynucleotide at very small metal: DNA (P) concentration ratio (ca. 1:30). This results in increased base-stacking interactions, with negligible change of the B conformation of DNA. Contrary to Zn2+ and Cd2+, which interact extensively with the nucleic bases (particularly at the N7 position of guanine), the alkaline-earth metal ions are bound almost exclusively to the phosphate groups. The affinity of both the Zn2+ and Cd2+ ions for G.C base pairs is comparable, but the Cd2+ ions interact more extensively with A.T pairs than Zn2+ ions. Interstrand cross-linking through the N3 atom of cytosine is suggested in the presence of Zn2+, but not Cd2+.  相似文献   

13.
Kinetics of dissociation of the complexes of bovine alpha-lactalbumin with Ca2+ and Mg2+ ions induced by mixing of the Ca2+- or Mg2+-loaded protein with the chelator of divalent cations EDTA has been studied by means of intrinsic fluorescence stopped flow method. Within the temperature region from 10 to approximately 37 degrees C the fluorescence kinetics curves for the Ca2+ removal are well fitted by one exponent with the rate constant ranging from 6.10(-3) to 1 s-1. Taking into account rather low rate of the fluorescence changes, one can assume that the limiting stage in this case is the dissociation of the single bound Ca2+ ion from the protein but not a conformational change which occurs after the Ca2+ dissociation. At temperatures above 37 degrees C the kinetics curves are best fitted by two exponents. The second exponent seems to be due to the denaturation of the apo-form of alpha-lactalbumin which takes place at these temperatures. The values of the dissociation rate constants of Mg2+ practically coincide with the values for Ca2+.  相似文献   

14.
At high K+ concentration, the effect of phosphate on Ca2+ uptake and release was studied in isolated rat liver mitochondria. Phosphate stimulated uptake at moderately high Ca2+ concentration, and inhibited release at high pH. At low pH, phosphate accelerated Ca2+ release. Ca2+ was released after a lag phase. The time of onset and the velocity of Ca2+ release depended on Ca2+ concentration. Ca2+ release was associated with mitochondrial swelling and destruction of the permeability barrier for sucrose and for chloride. Mg2+ inhibited Ca2+ release and the accompanying events. Ruthenium red and EGTA protected mitochondria from the destructive Ca2+ release and induced an immediate, slow release of Ca2+ and phosphate. Destructive Ca2+ release depended on the time of preincubation of respiration-inhibited mitochondria in the presence of Ca2+, prior to respiration-initiated Ca2+ uptake. The presence of phosphate and mitochondrial energization antagonized the destructive effect of calcium ions. Ca2+ release by acetoacetate also depended on pH. At pH 6.8, phosphate-stimulated Ca2+ release by acetoacetate, while it inhibited the acetoacetate effect at pH 7.6. The results suggest that an essential cause for the destruction of mitochondrial integrity is an increase in the intramitochondrial concentration of free calcium ions under the influence of phosphate.  相似文献   

15.
The analysis of absorption and circular dichroism spectra in UV and IR regions showed that Ca2+ ions interact both with the phosphate groups of DNA and with the HMGB1 protein. Not only negatively charged C-terminal part of the protein molecule participates in interaction with metal ions but also its DNA-binding domains. The latter fact leads to the change of the mode of protein-DNA interaction. The presence of Ca2+ ions prevents formation of ordered supramolecular structures, specific for the HMGB1-DNA complexes, though promotes intermolecular aggregation. The structure of the complexes between DNA and the protein HMGB1 lacking C-terminal tail appears to be the most sensitive to the presence of Ca2+ ions. The data obtained allow to conclude that Ca2+ ions do not play a structural role in the HMGB1/DNA complexes and the presence of these ions is not necessary to DNA compaction in such systems.  相似文献   

16.
To characterize the specificity of ion binding to phospholipids in terms of headgroup structure, hydration and lyotropic phase behavior we studied 1-palmitoyl-2-oleoyl-phosphatidylcholine as a function of relative humidity (RH) at 25 degrees C in the presence and absence of Li+, Na+, K+, Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+ and Cu2+ ions by means of infrared (IR) spectroscopy. All divalent cations and Li+ shift the gel-to-liquid crystalline phase transition towards bigger RH values indicating stabilization of the gel state. The observed shift correlates in a linearly fashion with the electrostatic solvation free energy for most of the ions in water that in turn, is inversely related to the ionic radius. This interesting result was interpreted in terms of the excess chemical potential of mixing of hydrated ions and lipids. Calcium, zinc and partially lithium, cause a positive deviation from the linear relationship. IR spectral analysis shows that the carbonyl groups become more accessible to the water in the presence of Mg2+, Ca2+, Sr2+ and Ba2+ probably because of their involvement into the hydration shell of the ions. In contrast, Be2+, Zn2+ and Cu2+ dehydrate the carbonyl groups at small and medium RH. The ability of the lipid to take up water is distinctly reduced in the presence of Zn2+ and, partially, of Cu2+ meaning that the headgroups have become less hydrophilic. The binding mode of Be2+ to lipid headgroups involves hydrolyzed water. Polarized IR spectra show that complex formation of the phosphate groups with divalent ions gives rise to conformational changes and immobilization of the headgroups. The results are discussed in terms of the lyotropic Hofmeister series and of fusogenic activity of the ionic species.  相似文献   

17.
Using the thermal denaturation method the effect of bivalent copper of (4-10(-6)-10(-3)) M concentrations on the helix-coil transition of DNA was studied in the solution of Na+ concentrations 10(-3)-10(-1) M. Unlike the previous studies, this paper makes allowance for the effect of impurity ions present in DNA and deionized water. It has been shown that in the region of low Cu2+ and Na+ concentrations, thermal stability increases, the melting range extends and the denaturation curves become asymmetric. At concentrations more than approximately 3-10(-5) M Cu2+, melting temperature starts to fall, and the range reduces to 1-1.5 degrees at [Cu2+] greater than or equal to 2-10(-4) M. As [Cu2+] reaches these values, the denaturation curve asymmetry and melting range increase again, which is due to the inversion of the relative stability of AT- and GC-pairs. Employing experimental and phase-transition-theory data for homopolymers, the constants of Cu2+ binding with phosphates and DNA bases were calculated. The concentration dependence of the DNA denaturation parameters was shown to be governed by the superposition of binding Cu2+ with phosphates and nucleic acid bases.  相似文献   

18.
In the present work using the IR spectroscopy method the effect of ethanol on structural transitions of DNA and polyphosphates under the action of Ca2+ ions in mixed solutions containing ethanol (0-25 vol.%) was studied. It was shown that, on its interaction with Ca2+ ions, in aqueous and mixed solutions DNA becomes transformed into compact form. With the increase of concentration of ethanol the degree of Ca2+-induced DNA compactisation rises. It was found that, in mixed solutions containing ethanol, Ca2+-induced DNA compactisation depends not only on the solution's dielectric permeability but also on the solution structure. On stabilisation of the water structure in the presence of low ethanol concentrations a stabilisation of the DNA macromolecule occurs that leads to the increase of the Ca2+ ion concentration necessary for DNA compactisation. Comparison of the effects of ethanol on Ca2+-induced structural transitions in DNA and polyphosphates in mixed solvents permits to suppose that at alcohol concentrations in solution resulting in disruption of the water spatial structure, some peculiarities are observed in the behavior of those molecules whose hydrophobic interactions are essential.  相似文献   

19.
As to functional consequences of Ca2+ uptake in isolated rat liver mitochondria, we simultaneously measured 3H2O and [14C]sucrose spaces, monovalent cation distribution, membrane potential and delta pH across the inner membrane, and [32P]phosphate and 45Ca2+ content in parallel incubations of different ionic composition. Without added Ca2+ and phosphate, mitochondrial matrix volume, membrane potential, and delta pH depended on the concentration and permeability of monovalent cations. Despite large differences in membrane potential, maximal Ca2+ uptake was identical under all conditions. Ca2+ uptake never provoked a volume change from which an osmotic active state of mitochondrial Ca2+ could be concluded. If matrix volume shrunk this could be totally accounted for by the loss of alkali ions exchanging for calcium ions. Even phosphate taken up in conjunction with Ca2+ was osmotically silent. Volume increases here occurring if K+ was permeabilized, solely resulted from K+ uptake, though this condition may give rise to irreversible mitochondrial damage with Ca2+ and phosphate release. As mitochondrial Ca2+ is bound, an electro-chemical equilibrium across the membrane is impossible for this ion. This has to be considered in any model describing equilibria of Ca2+ with mitochondria, though present models neglect this state of mitochondrial Ca2+.  相似文献   

20.
Enzymes entrapped in reverse micelles can be studied in low-water environments that have the potential of restricting conformational mobility in specific steps of the reaction cycle. Sarcoplasmic reticulum Ca2+-ATPase was incorporated into a reverse-micelle system (TPT) composed of toluene, phospholipids, Triton X-100 and varying amounts of water (0.5-7%, v/v). Phosphorylation of the Ca2+-ATPase by ATP required the presence of both water and Ca2+ in the micelles. No phosphoenzyme (EP) was detected in the presence of EGTA. Phosphorylation by Pi (inorganic phosphate) in the absence of Ca2+ was observed at water content below that necessary for phosphorylation by ATP. In contrast to what is observed in a totally aqueous medium, EP formed by Pi was partially resistant to dephosphorylation by Ca2+. However, the addition of non-radioactive Pi to the EP already formed caused a rapid decrease in radiolabelled enzymes, as expected for the isotopic dilution, indicating the existence of an equilibrium (E+Pi<-->EP). Phosphorylation by Pi also occurred in TPT containing millimolar Ca2+ concentrations in a range of water concentrations (2-5% v/v). The substrates p-nitrophenyl phosphate, acetyl phosphate, ATP and GTP increased the EP level under these conditions. These results suggest that: (1) the rate of conversion of the ATPase conformer E2 into E1 is greatly reduced at low water content, so that E2-->E1 becomes the rate-limiting step of the catalytic cycle; and (2) in media of low water content, Pi can phosphorylate both E1Ca and E2. Thus, the effect of enzyme hydration is complex and involves changes in the phosphorylation reaction at the catalytic site, in the equilibrium between E2 and E1 conformers, and in their specificity for substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号