首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heparanase is an endoglycosidase that cleaves heparan sulfate in the extracellular matrix (ECM) and hence participates in ECM degradation and remodeling. Heparanase is involved in fundamental biological processes such as cancer metastasis, angiogenesis, and inflammation. Alternative splicing in the coding region of human heparanase was not reported. Here, we report the cloning of a splice variant of human heparanase that lacks exon 5 and is missing 174 bp compared to the wild-type cDNA. Splice 5 is expressed as a 55 kDa protein compared to the 65 and 50 kDa latent and active wild-type enzyme. Splice 5 was not detected in the incubation medium of tumor cells as opposed to the wild-type latent heparanase. Splice 5 escaped proteolytic cleavage, was devoid of HS degradation activity and exhibited diffused rather than granular cellular localization.  相似文献   

2.
Heparan sulfate proteoglycans (HSPGs) play a key role in the self-assembly, insolubility and barrier properties of basement membranes and extracellular matrices. Hence, cleavage of heparan sulfate (HS) affects the integrity and functional state of tissues and thereby fundamental normal and pathological phenomena involving cell migration and response to changes in the extracellular microenvironment. Here, we describe the molecular properties, expression and function of a human heparanase, degrading HS at specific intrachain sites. The enzyme is synthesized as a latent approximately 65 kDa protein that is processed at the N-terminus into a highly active approximately 50 kDa form. The heparanase mRNA and protein are preferentially expressed in metastatic cell lines and human tumor tissues. Overexpression of the heparanase cDNA in low-metastatic tumor cells conferred a high metastatic potential in experimental animals, resulting in an increased rate of mortality. The heparanase enzyme also releases ECM-resident angiogenic factors in vitro and its overexpression induces an angiogenic response in vivo. Heparanase may thus facilitate both tumor cell invasion and neovascularization, both critical steps in cancer progression. The enzyme is also involved in cell migration associated with inflammation and autoimmunity. The unexpected identification of a single predominant functional heparanase suggests that the enzyme is a promising target for drug development. In fact, treatment with heparanase inhibitors markedly reduces tumor growth, metastasis and autoimmune disorders in animal models. Studies are underway to elucidate the involvement of heparanase in normal processes such as implantation, embryonic development, morphogenesis, tissue repair, inflammation and HSPG turnover. Heparanase is the first functional mammalian HS-degrading enzyme that has been cloned, expressed and characterized. This may lead to identification and cloning of other glycosaminoglycan degrading enzymes, toward a better understanding of their involvement and significance in normal and pathological processes.  相似文献   

3.
4.
Human heparanase is localized within lysosomes in a stable form   总被引:10,自引:0,他引:10  
Heparanase is an endo-beta-D-glucuronidase involved in degradation of heparan sulfate (HS) and extracellular matrix (ECM) of a wide range of cells of vertebrate and invertebrate tissues. The enzymatic activity of heparanase is characterized by specific intrachain cleavage of glycosidic bonds with a hydrolase mechanism. This enzyme facilitates cell invasion and hence plays a role in tumor metastasis, angiogenesis, inflammation, and autoimmunity. Although the expression pattern and molecular properties of heparanase have been characterized, its subcellular localization has not been unequivocally determined. We have previously suggested that heparanase subcellular localization is a major determinant in regulating the enzyme's biological functions. In the present study we examined heparanase localization in three different cell types, utilizing immunofluorescent staining and electron microscopy. Our results indicate that heparanase is localized primarily within lysosomes and the Golgi apparatus. A construct composed of heparanase cDNA fused to green fluorescent protein, utilized in order to visualize the enzyme within living cells, confirmed its localization in acidic vesicles. We suggest that following synthesis, heparanase is transported into the Golgi apparatus and subsequently accumulates in a stable form within the lysosomes, where it functions in HS turnover. The lysosomal compartment may also serve as a site for heparanase confinement within the cells, limiting its secretion and uncontrolled extracellular activities associated with tumor metastasis and angiogenesis.  相似文献   

5.
Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intra-chain sites. Blood-borne neutrophils, macrophages, mast cells, and platelets exhibit heparanase activity that is thought to be stored in specific granules. The degranulated heparanase is implicated in extravasation of metastatic tumor cells and activated cells of the immune system. Degranulation and heparanase release in response to an inflammatory stimulus or platelet activation would facilitate cellular extravasation directly, by altering the composition and structural integrity of the extracellular matrix, or indirectly, by releasing HS-bound proinflammatory cytokines and chemokines. We hypothesized that in addition to such indirect effect, the released heparanase may also locally affect and activate neighboring cells such as endothelial cells. Here, we provide evidence that addition of the 65-kDa latent heparanase to endothelial cells enhances Akt signaling. Heparanase-mediated Akt phosphorylation was independent of its enzymatic activity or the presence of cell membrane HS proteoglycans and was augmented by heparin. Moreover, addition of heparanase stimulated phosphatidylinositol 3-kinase-dependent endothelial cell migration and invasion. These results suggest, for the first time, that heparanase activates endothelial cells and elicits angiogenic responses directly. This effect appears to be mediated by as yet unidentified heparanase receptor.  相似文献   

6.
An ELISA method for the detection and quantification of human heparanase   总被引:8,自引:0,他引:8  
Heparanase is a mammalian endo-beta-D-glucuronidase that cleaves heparan sulfate side chains at a limited number of sites. Heparanase enzymatic activity is thought to participate in degradation and remodeling of the extracellular matrix and to facilitate cell invasion associated with tumor metastasis, angiogenesis, and inflammation. Traditionally, heparanase activity was well correlated with the metastatic potential of a large number of tumor-derived cell types. More recently, heparanase upregulation was detected in an increasing number of primary human tumors, correlating, in some cases, with poor postoperative survival and increased tumor vascularity. The present study was undertaken to develop a highly sensitive ELISA suitable for the determination and quantification of human heparanase in tissue extracts and body fluids. The assay preferentially detects the 8+50 kDa active heparanase heterodimer vs. the latent 65 kDa proenzyme and correlates with immunoblot analysis of heparanase containing samples. It detects heparanase at concentrations as low as 200 pg/ml and is suitable for quantification of heparanase in tissue extracts and urine.  相似文献   

7.
Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate (HS), facilitating degradation of the extracellular matrix (ECM) and the release of HS-bound biomolecules including cytokines. The remodeling of the ECM by heparanase is important for various physiological and pathological processes, including inflammation, wound healing, tumour angiogenesis and metastasis. Although heparanase has been proposed to facilitate leukocyte migration through degradation of the ECM, its role in inflammation by regulating the expression and release of cytokines has not been fully defined. In this study, the role of heparanase in regulating the expression and release of cytokines from human and murine immune cells was examined. Human peripheral blood mononuclear cells treated ex vivo with heparanase resulted in the release of a range of pro-inflammatory cytokines including IL-1β, IL-6, IL-8, IL-10 and TNF. In addition, mouse splenocytes treated ex vivo with heparanase resulted in the release of IL-6, MCP-1 and TNF. A similar pattern of cytokine release was also observed when cells were treated with soluble HS. Furthermore, heparanase-induced cytokine release was abolished by enzymatic-inhibitors of heparanase, suggesting this process is mediated via the enzymatic release of cell surface HS fragments. As soluble HS can signal through the Toll-like receptor (TLR) pathway, heparanase may promote the upregulation of cytokines through the generation of heparanase-cleaved fragments of HS. In support of this hypothesis, mouse spleen cells lacking the key TLR adaptor molecule MyD88 demonstrated an abolition of cytokine release after heparanase stimulation. Furthermore, TLR4-deficient spleen cells showed reduced cytokine release in response to heparanase treatment, suggesting that TLR4 is involved in this response. Consistent with these observations, the pathway involved in cytokine upregulation was identified as being NF-κB-dependent. These data identify a new mechanism for heparanase in promoting the release of pro-inflammatory cytokines that is likely to be important in regulating cell migration and inflammation.  相似文献   

8.
Heparanase is an endo-β-d-glucuronidase responsible for the cleavage of heparan sulfate, participating in extracellular matrix degradation and remodeling. Heparanase activity is well correlated with the potential for metastasis and angiogenesis in a large number of tumor-derived cell types, directly implicating the involvement of heparanase in tumor progression. Here, we provide the first evidence that the hydrophobic C-terminus region of heparanase has specific roles in intracellular trafficking, secretion, activation, and heparanase-mediated tumor cell migration. Furthermore, partial deletion of this hydrophobic C-terminus region, substitution within the hydrophobic C-terminus region to hydrophilic amino acids, and experiments of single amino acid mutations further point out the importance of the hydrophobic C-terminus region. Therefore, our findings suggest that the hydrophobic C-terminus region of heparanase is a determinant for its intracellular trafficking to the Golgi apparatus, followed by secretion, activation, and tumor cell migration.  相似文献   

9.
10.
Extracellular heparanase activity releases growth factors and angiogenic factors from heparan sulfate (HS) storage sites and alters the integrity of the extracellular matrix. These activities lead to a loss of normal cell matrix adherent junctions and correlate with invasive cellular phenotypes. Elevated expression of heparanase is associated with several human cancers and with vascular remodeling. Heparanase cleaves only a limited fraction of glucuronidic linkages in HS. There have been few investigations of the functional consequences of heparanase activity, largely due to the heterogeneity and complexity of HS. Here, we report a liquid chromatography-mass spectrometry (LC-MS)-based approach to profile the terminal structures created by heparanase digestion and reconstruct the heparanase cleavage sites from the products. Using this method, we demonstrate that heparanase cleaves at the non-reducing side of highly sulfated HS domains, exposing cryptic growth factor binding sites. This cleavage pattern is observed in HS from several tissue sources, regardless of overall sulfation degree, indicating a common recognition pattern. We further demonstrate that heparanase cleavage of HS chains leads to increased ability to support FGF2-dependent cell proliferation. These results suggest a new mechanism to explain how heparanase might potentiate the uncontrolled cell proliferation associated with cancer through its ability to activate nascent growth factor-promoting domains within HS.  相似文献   

11.
12.
Involvement of heparanase in migration of microglial cells   总被引:1,自引:0,他引:1  
Heparanase, a matrix-degrading enzyme that cleaves heparan sulfate side chains from heparan sulfate proteoglycans (HSPGs), has been shown to facilitate cell invasion, migration, and extravasation of metastatic tumor cells or immune cells. In this study, the expression and functions of heparanase were investigated using rat primary cultured microglia, the resident macrophages in the brain. The microglia were found to express heparanase mRNA and protein. Microglia treated with lipopolysaccharide (LPS) were activated, expressed induced nitric oxide synthase and elevated the expression of heparanase. Heparanase has two molecular weights: a 65 kDa latent form and an active 50 kDa. Both forms were expressed by LPS-treated activated microglia; however, untreated microglia primarily expressed the latent form. Cell lysates from microglia actually degraded Matrigel containing HSPG. Heparanase was colocalized with the actin cytoskeleton in microglial leading edges or ruffled membranes. Microglia transmigrated through a Matrigel-coated pored membrane. This process was inhibited by SF-4, a specific heparanase inhibitor, in a concentration-dependent manner. Degraded HSPG was generated when microglia transmigrated through the coated membrane, and this was also inhibited by SF-4. The results suggest the involvement of heparanase in the migration or invasion of microglia or brain macrophages across basement membrane around brain vasculature.  相似文献   

13.
Heparanase is an endo-beta-glucuronidase that specifically cleaves heparan sulfate (HS) chains. Heparanase is involved in the process of metastasis and angiogenesis through the degradation of HS chains of the extracellular matrix and cell surface. Recently, we demonstrated that heparanase was localized in the cell nucleus of normal esophageal epithelium and esophageal cancer, and that its expression was correlated with cell differentiation. However, the nuclear function of heparanase remains unknown. To elucidate the role of heparanase in esophageal epithelial differentiation, primary human esophageal cells were grown in monolayer as well as organotypic cultures, and cell differentiation was induced. Expression of heparanase, HS, involucrin, and p27 was determined by immunostaining and Western blotting. SF4, a novel pharmacological inhibitor, was used to specifically inhibit heparanase activity. Upon esophageal cell differentiation, heparanase was translocated from the cytoplasm to the nucleus. Such translocation of heparanase appeared to be associated with the degradation of HS chains in the nucleus and changes in the expression of keratinocyte differentiation markers such as p27 and involucrin, whose induction was inhibited by SF4. Furthermore, these in vitro observations agreed with the expression pattern of heparanase, HS, involucrin, cytokeratin 13, and p27 in normal esophageal epithelium. Nuclear translocation of heparanase and its catalytic cleavage of HS may play a critical role in the differentiation of esophageal epithelial cells. Our study provides a novel insight into the role of heparanase in an essential differentiation process.  相似文献   

14.
乙酰肝素酶是目前发现的哺乳动物细胞中唯一能切割细胞外基质中硫酸肝素蛋白多糖侧链--硫酸乙酰肝素--的内源性糖苷酶,是抗肿瘤,抗炎症的理想靶点。对其深入研究将有助于揭示组织修复,血管形成,自身免疫,肿瘤转移等生理及病理过程。本就乙酰肝素酶的发现,分子特性,基因定位,转录,表达调控,细胞内的亚定位及其功能活性调控机制方面的研究进展进行综述。  相似文献   

15.
Heparan sulfate (HS) proteoglycans are essential components of the cell‐surface and extracellular matrix (ECM) which provide structural integrity and act as storage depots for growth factors and chemokines, through their HS side chains. Heparanase (HPSE) is the only mammalian endoglycosidase known that cleaves HS, thus contributing to matrix degradation and cell invasion. The enzyme acts as an endo‐β‐D ‐glucuronidase resulting in HS fragments of discrete molecular weight size. Cell‐surface HS is known to inhibit or stimulate tumorigenesis depending upon size and composition. We hypothesized that HPSE contributes to melanoma metastasis by generating bioactive HS from the cell‐surface to facilitate biological activities of tumor cells as well as tumor microenvironment. We removed cell‐surface HS from melanoma (B16B15b) by HPSE treatment and resulting fragments were isolated. Purified cell‐surface HS stimulated in vitro B16B15b cell migration but not proliferation, and importantly, enhanced in vivo angiogenesis. Furthermore, melanoma cell‐surface HS did not affect in vitro endothelioma cell (b.End3) migration. Our results provide direct evidence that, in addition to remodeling ECM and releasing growth factors and chemokines, HPSE contributes to aggressive phenotype of melanoma by releasing bioactive cell‐surface HS fragments which can stimulate melanoma cell migration in vitro and angiogenesis in vivo. J. Cell. Biochem. 106: 200–209, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Emerging evidence indicates that exosomes play a key role in tumor-host cross-talk and that exosome secretion, composition, and functional capacity are altered as tumors progress to an aggressive phenotype. However, little is known regarding the mechanisms that regulate these changes. Heparanase is an enzyme whose expression is up-regulated as tumors become more aggressive and is associated with enhanced tumor growth, angiogenesis, and metastasis. We have discovered that in human cancer cells (myeloma, lymphoblastoid, and breast cancer), when expression of heparanase is enhanced or when tumor cells are exposed to exogenous heparanase, exosome secretion is dramatically increased. Heparanase enzyme activity is required for robust enhancement of exosome secretion because enzymatically inactive forms of heparanase, even when present in high amounts, do not dramatically increase exosome secretion. Heparanase also impacts exosome protein cargo as reflected by higher levels of syndecan-1, VEGF, and hepatocyte growth factor in exosomes secreted by heparanase-high expressing cells as compared with heparanase-low expressing cells. In functional assays, exosomes from heparanase-high cells stimulated spreading of tumor cells on fibronectin and invasion of endothelial cells through extracellular matrix better than did exosomes secreted by heparanase-low cells. These studies reveal that heparanase helps drive exosome secretion, alters exosome composition, and facilitates production of exosomes that impact both tumor and host cell behavior, thereby promoting tumor progression.  相似文献   

17.
Heparanase is an endo-beta-glucuronidase that cleaves heparan sulfate (HS) chains of heparan sulfate proteoglycans on cell surfaces and in the extracellular matrix (ECM). Heparanase, overexpressed by most cancer cells, facilitates extravasation of blood-borne tumor cells and causes release of growth factors sequestered by HS chains, thus accelerating tumor growth and metastasis. Inhibition of heparanase with HS mimics is a promising target for a novel strategy in cancer therapy. In this study, in vitro inhibition of recombinant heparanase was determined for heparin derivatives differing in degrees of 2-O- and 6-O-sulfation, N-acetylation, and glycol splitting of nonsulfated uronic acid residues. The contemporaneous presence of sulfate groups at O-2 of IdoA and at O-6 of GlcN was found to be non-essential for effective inhibition of heparanase activity provided that one of the two positions retains a high degree of sulfation. N-Desulfation/ N-acetylation involved a marked decrease in the inhibitory activity for degrees of N-acetylation higher than 50%, suggesting that at least one NSO3 group per disaccharide unit is involved in interaction with the enzyme. On the other hand, glycol splitting of preexisting or of both preexisting and chemically generated nonsulfated uronic acids dramatically increased the heparanase-inhibiting activity irrespective of the degree of N-acetylation. Indeed N-acetylated heparins in their glycol-split forms inhibited heparanase as effectively as the corresponding N-sulfated derivatives. Whereas heparin and N-acetylheparins containing unmodified D-glucuronic acid residues inhibited heparanase by acting, at least in part, as substrates, their glycol-split derivatives were no more susceptible to cleavage by heparanase. Glycol-split N-acetylheparins did not release basic fibroblast growth factor from ECM and failed to stimulate its mitogenic activity. The combination of high inhibition of heparanase and low release/potentiation of ECM-bound growth factor indicates that N-acetylated, glycol-split heparins are potential antiangiogenic and antimetastatic agents that are more effective than their counterparts with unmodified backbones.  相似文献   

18.
PG545 is a clinically relevant heparan sulfate (HS) mimetic which, in addition to possessing anti-angiogenic properties, also acts as a heparanase inhibitor which may differentiate its mechanism(s) of action from approved angiogenesis inhibitors. The degradation of HS by heparanase has been strongly implicated in cell dissemination and the metastatic process. Thus, the anti-metastatic activity of PG545 has been linked to the enzymatic function of heparanase – the only endoglycosidase known to cleave HS, an important component of the extracellular matrix (ECM) which represents a potential avenue for therapeutic intervention for certain metastatic cancer indications. Recent concerns raised about the paucity of overall survival as an endpoint in mouse models of clinically relevant metastasis led us to examine the effect of PG545 on the progression of both primary tumor growth and the spontaneously metastasizing disease in the 4T1 syngeneic breast carcinoma model in a non-surgical and surgical (mastectomy) setting. PG545 significantly inhibited primary tumor growth but importantly also inhibited lung metastasis in treated mice, an effect not observed with the tyrosine kinase inhibitor sorafenib. Importantly, PG545 significantly enhanced overall survival compared to vehicle control and the sorafenib group, suggesting PG545’s inhibitory effect on heparanase is indeed a critical attribute to induce anti-metastatic activity. In addition to blocking a common angiogenic signalling pathway in tumor cells, the expression of heparanase in the primary tumor and lung was also significantly reduced by PG545 treatment. These results support the ongoing development of PG545 and highlight the potential utility in metastatic disease settings.  相似文献   

19.
Heparan sulfate proteoglycans (HSPGs) interact with numerous proteins of importance in animal development and homeostasis. Heparanase, which is expressed in normal tissues and upregulated in angiogenesis, cancer and inflammation, selectively cleaves beta-glucuronidic linkages in HS chains. In a previous study, we transgenically overexpressed heparanase in mice to assess the overall effects of heparanase on HS metabolism. Metabolic labeling confirmed extensive fragmentation of HS in vivo. In the current study we found that in liver showing excessive heparanase overexpression, HSPG turnover is accelerated along with upregulation of HS N- and O-sulfation, thus yielding heparin-like chains without the domain structure typical of HS. Heparanase overexpression in other mouse organs and in human tumors correlated with increased 6-O-sulfation of HS, whereas the domain structure was conserved. The heavily sulfated HS fragments strongly promoted formation of ternary complexes with fibroblast growth factor 1 (FGF1) or FGF2 and FGF receptor 1. Heparanase thus contributes to regulation of HS biosynthesis in a way that may promote growth factor action in tumor angiogenesis and metastasis.  相似文献   

20.

Heparanase is an endo-beta-glucuronidase, the only enzyme in mammals capable of cleaving heparan sulfate/heparin chains from proteoglycans. The oligosaccharides generated by heparanase present extensive biological functions since such oligosaccharides interact with adhesion molecules, growth factors, angiogenic factors and cytokines, modulating cell proliferation, migration, inflammation, and carcinogenesis. However, the regulation of heparanase activity is not fully understood. It is known that heparanase is synthesized as an inactive 65 kDa isoform and that post-translation processing forms an active 50 kDa enzyme. In the present study, we are interested in investigating whether heparanase is regulated by its own substrate as observed with many other enzymes. Wild-type Chinese hamster (Cricetulus griséus) ovary cells (CHO-K1) were treated with different doses of heparin. Heparanase expression was analyzed by Real-time PCR and flow cytometry. Also, heparanase activity was measured. The heparanase activity assay was performed using a coated plate with biotinylated heparan sulfate. In the present assay, a competitive heparin inhibition scenario was set aside. Exogenous heparin trigged a cell signaling pathway that increased heparanase mRNA and protein levels. The Wnt/beta-catenin pathway, judged by TCF-driven luciferase activity, seems to be involved to enhance heparanase profile during treatment with exogenous heparin. Lithium chloride treatment, an activator of the Wnt/beta-catenin pathway, confirmed such mechanism of transduction in vivo using zebrafish embryos and in vitro using CHO-K1 cells. Taken together the results suggest that heparin modulates heparanase expression by Wnt/beta-catenin.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号