首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Over 155 mutations within the V2 vasopressin receptor (AVPR2) gene are responsible for nephrogenic diabetes insipidus (NDI). The expression and subcellular distribution of four of these was investigated in transfected cells. These include a point mutation in the seventh transmembrane domain (S315R), a frameshift mutation in the third intracellular loop (804delG), and two nonsense mutations that code for AVPR2 truncated within the first cytoplasmic loop (W71X) and in the proximal portion of the carboxyl tail (R337X). RT-PCR revealed that mRNA was produced for all mutant receptor constructs. However, no receptor protein, as assessed by Western blot analysis, was detected for 804delG. The S315R was properly processed through the Golgi and targeted to the plasma membrane but lacked any detectable AVP binding or signaling. Thus, this mutation induces a conformational change that is compatible with endoplasmic reticulum (ER) export but dramatically affects hormone recognition. In contrast, the W71X and R337X AVPR2 were retained inside the cell as determined by immunofluorescence. Confocal microscopy revealed that they were both retained in the ER. To determine if calnexin could be involved, its interaction with the AVPR2 was assessed. Sequential coimmunoprecipitation demonstrated that calnexin associated with the precursor forms of both wild-type (WT) and mutant receptors in agreement with its general role in protein folding. Moreover, its association with the ER-retained R337X mutant was found to be longer than with the WT receptor suggesting that this molecular chaperone also plays a role in quality control and ER retention of misfolded G protein-coupled receptors.  相似文献   

2.
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.  相似文献   

3.
Little is known about endoplasmic reticulum (ER) export signals, particularly those of members of the G-protein-coupled receptor family. We investigated the structural motifs involved in membrane export of the human pituitary vasopressin V1b/V3 receptor. A series of V3 receptors carrying deletions and point mutations were expressed in AtT20 corticotroph cells. We analyzed the export of these receptors by monitoring radioligand binding and by analysis of a V3 receptor tagged with both green fluorescent protein and Myc epitopes by a novel flow cytometry-based method. This novel method allowed us to quantify total and membrane-bound receptor expression. Receptors lacking the C terminus were not expressed at the cell surface, suggesting the presence of an export motif in this domain. The distal C terminus contains two di-acidic (DXE) ER export motifs; however, mutating both these motifs had no effect on the V3 receptor export. The proximal C terminus contains a di-leucine (345)LL(346) motif surrounded by the hydrophobic residues Phe(341), Asn(342), and Leu(350). The mutation of one or more of these five residues abolished up to 100% of the receptor export. In addition, these mutants colocalized with calnexin, demonstrating that they were retained in the ER. Finally, this motif was sufficient to confer export properties on a CD8alpha glycoprotein-V3 receptor chimera. In conclusion, we have identified a novel export motif, FN(X)(2)LL(X)(3)L, in the C terminus of the V3 receptor.  相似文献   

4.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

5.
The alpha-factor pheromone receptor activates a G protein signaling cascade that stimulates MATa yeast cells to undergo conjugation. The cytoplasmic C terminus of the receptor is not necessary for G protein activation but instead acts as a regulatory domain that promotes adaptation to alpha-factor. The role of phosphorylation in regulating the alpha-factor receptor was examined by mutating potential phosphorylation sites. Mutation of the four most distal serine and threonine residues in the receptor C terminus to alanine caused increased sensitivity to alpha-factor and a delay in recovering from a pulse of alpha-factor. 32PO4 labeling experiments demonstrated that the alanine substitution mutations decreased the in vivo phosphorylation of the receptor. Phosphorylation apparently alters the regulation of G protein activation, since neither receptor number nor affinity for ligand was significantly altered by mutation of the distal phosphorylation sites. Furthermore, mutation of the distal phosphorylation sites in a receptor mutant that fails to undergo ligand-stimulated endocytosis caused increased sensitivity to alpha-factor, which suggests that regulation by phosphorylation can occur at the cell surface and is independent of endocytosis. Mutation of the distal serine and threonine residues of the receptor also caused a slight defect in alpha-factor-induced morphogenesis, but the defect was not as severe as the morphogenesis defect caused by truncation of the cytoplasmic C terminus of the receptor. These distal residues in the C terminus play a special role in receptor regulation, since mutation of the next five adjacent serine and threonine residues to alanine did not affect the sensitivity to alpha-factor. Altogether, these results indicate that phosphorylation plays an important role in regulating alpha-factor receptor function.  相似文献   

6.
Synthesis and maturation of G protein-coupled receptors are complex events that require an intricate combination of processes that include protein folding, post-translational modifications, and transport through distinct cellular compartments. Relatively little is known about the nature and kinetics of specific steps involved in these processes. Here, the human delta opioid receptor expressed in human embryonic kidney 293S cells is used as a model to delineate these steps and to establish the kinetics of receptor synthesis, glycosylation, and transport. We found that the receptor is synthesized as a core-glycosylated M(r) 45,000 precursor that is converted to the fully mature M(r) 55,000 receptor with a half-time of about 120 min. In addition to trimming and processing of two N-linked oligosaccharides, maturation involves addition of O-glycans containing N-acetylgalactosamine, galactose, and sialic acid. In contrast to N-glycosylation, which is initiated co-translationally and is completed when the protein reaches the trans-Golgi network, O-glycosylation was found to occur only after the receptor exits from the endoplasmic reticulum (ER) and was terminated as early as the trans-Golgi cisternae. Once the carbohydrates are fully processed and the receptor reaches the trans-Golgi network, it is transported to the cell surface in about 10 min. The exit from the ER was found to be the limiting step in overall processing of the receptor. This indicates that early events in the folding of the receptor are probably rate-limiting and that receptor folding intermediates are retained in the ER until they can adopt the correct conformation. The overall low efficiency of receptor maturation, less than 50% of the precursor being processed to the fully glycosylated protein, further suggests that only a fraction of the synthesized receptors attain properly folded conformation that allows exit from the ER. This indicates that folding and ER export are key events in control of receptor cell surface expression. Whether or not the low efficiency of the ER export is a general feature among G protein-coupled receptors remains to be investigated.  相似文献   

7.
We studied the role played by the intracellular COOH-terminal region of the human arginine vasopressin (AVP) V1-vascular receptor (V1R) in ligand binding, trafficking, and mitogenic signal transduction in Chinese hamster ovary cells stably transfected with the human AVP receptor cDNA clones that we had isolated previously. Truncations, mutations, or chimeric alterations of the V1R COOH terminus did not alter ligand binding, but agonist-induced V1R internalization and recycling were reduced in the absence of the proximal region of the V(1)R COOH terminus. Coupling to phospholipase C was altered as a function of the COOH-terminal length. Deletion of the proximal portion of the V1R COOH terminus or its replacement by the V2-renal receptor COOH terminus prevented AVP stimulation of DNA synthesis and progression through the cell cycle. Mutation of a kinase consensus motif in the proximal region of the V1R COOH terminus also abolished the mitogenic response. Thus the V1R cytoplasmic COOH terminus is not involved in ligand specificity but is instrumental in receptor trafficking and facilitates the interaction between the intracellular loops of the receptor, G protein, and phospholipase C. It is absolutely required for transmission of the mitogenic action of AVP, probably via a specific kinase phosphorylation site.  相似文献   

8.
The endoplasmic reticulum (ER) is recognized as an important site for regulating cell surface expression of membrane proteins. We recently reported that only a fraction of newly synthesized delta opioid receptors could leave the ER and reach the cell surface, the rest being degraded by proteasomes. Here, we demonstrate that membrane-permeable opioid ligands facilitate maturation and ER export of the receptor, thus acting as pharmacological chaperones. We propose that these ligands stabilize the newly synthesized receptor in the native or intermediate state of its folding pathway, possibly by inducing stabilizing conformational constrains within the hydrophobic core of the protein. The receptor precursors that are retained in the ER thus represent fully competent folding intermediates that can be targets for pharmacological intervention aimed at regulating receptor expression and cellular responsiveness. The pharmacological chaperone action is independent of the intrinsic signaling efficacy of the ligand, since both agonists and antagonists were found to promote receptor maturation. This novel property of G protein-coupled receptor ligands may have important implications when considering their effects on cellular responsiveness during therapeutic treatments.  相似文献   

9.
The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 (PAC1) receptor is a G protein-coupled receptor and class II receptor member. The receptor domains critical for signaling are unknown. To explore the role of the C terminus, truncations of 63 residues (Tr406), 53 residues (Tr416), 49 residues (Tr420), 44 residues (Tr424), and 37 residues (Tr433) were constructed and expressed in NIH/3T3 cells, and immunofluorescence, radioligand binding, adenylyl cyclase (AC) and phospholipase C (PLC) assays were performed. (125)I-PACAP-27 binding (K(d) = 0.6-1.5 nm) for the Tr406 and Tr433 were similar to wild type Hop and Null splice variants (K(d) = approximately 1.1 nm). Although internalization of ligand for both the Tr406 and Tr433 mutants was reduced to 50-60% at 60 min compared with 76-87% for WT, loss of G protein coupling did not account for differences in internalization. Despite similar binding properties Tr406 and Tr416 mutants showed no AC or PLC response. Addition of 14 amino acids distal to HopTr406 resulted in normal AC and PLC responses. Site-directed mutagenesis indicated that Arg(416) and Ser(417) are essential for G protein activation. The proximal C terminus mediates signal transduction, and the distal is involved with internalization. Two residues within the C terminus, Arg(416) and Ser(417) conserved among class II receptors are the likely sites for G protein coupling.  相似文献   

10.
The serotonin transporter (SERT) is a member of the SLC6 family of solute carriers. SERT plays a crucial role in synaptic neurotransmission by retrieving released serotonin. The intracellular carboxyl terminus of various neurotransmitter transporters has been shown to be important for the correct delivery of SLC6 family members to the cell surface. Here we studied the importance of the C terminus in trafficking and folding of human SERT. Serial truncations followed by mutagenesis identified sequence spots (PG(601,602), RII(607-609)) within the C terminus relevant for export of SERT from the endoplasmic reticulum (ER). RI(607,608) is homologous to the RL-motif that in other SLC6 family members provides a docking site for the COPII component Sec24D. The primary defect resulting from mutation at PG(601,602) and RI(607,608) was impaired folding, because mutated transporters failed to bind the inhibitor [(3)H]imipramine. In contrast, when retained in the ER (e.g. by dominant negative Sar1) the wild type transporter bound [(3)H]imipramine with an affinity comparable to that of the surface-expressed transporter. SERT-RI(607,608)AA and SERT-RII(607-609)AAA were partially rescued by treatment of cells with the nonspecific chemical chaperone DMSO or the specific pharmacochaperone ibogaine (which binds to the inward facing conformation of SERT) but not by other classes of ligands (inhibitors, substrates, amphetamines). These observations (i) demonstrate an hitherto unappreciated role of the C terminus in the folding of SERT, (ii) indicates that the folding trajectory proceeds via an inward facing intermediate, and (iii) suggest a model where the RI-motif plays a crucial role in preventing premature Sec24-recruitment and export of incorrectly folded transporters.  相似文献   

11.
Homologous desensitization of D(1) dopamine receptors is thought to occur through their phosphorylation leading to arrestin association which interdicts G protein coupling. In order to identify the relevant domains of receptor phosphorylation, and to determine how this leads to arrestin association, we created a series of mutated D(1) receptor constructs. In one mutant, all of the serine/threonine residues within the 3rd cytoplasmic domain were altered (3rdTOT). A second construct was created in which only three of these serines (serines 256, 258, and 259) were mutated (3rd234). We also created four truncation mutants of the carboxyl terminus (T347, T369, T394, and T404). All of these constructs were comparable with the wild-type receptor with respect to expression and adenylyl cyclase activation. In contrast, both of the 3rd loop mutants exhibited attenuated agonist-induced receptor phosphorylation that was correlated with an impaired desensitization response. Sequential truncation of the carboxyl terminus of the receptor resulted in a sequential loss of agonist-induced phosphorylation. No phosphorylation was observed with the most severely truncated T347 mutant. Surprisingly, all of the truncated receptors exhibited normal desensitization. The ability of the receptor constructs to promote arrestin association was evaluated using arrestin-green fluorescent protein translocation assays and confocal fluorescence microscopy. The 3rd234 mutant receptor was impaired in its ability to induce arrrestin translocation, whereas the T347 mutant was comparable with wild type. Our data suggest a model in which arrestin directly associates with the activated 3rd cytoplasmic domain in an agonist-dependent fashion; however, under basal conditions, this is sterically prevented by the carboxyl terminus of the receptor. Receptor activation promotes the sequential phosphorylation of residues, first within the carboxyl terminus and then the 3rd cytoplasmic loop, thereby dissociating these domains and allowing arrestin to bind to the activated 3rd loop. Thus, the role of receptor phosphorylation is to allow access of arrestin to its receptor binding domain rather than to create an arrestin binding site per se.  相似文献   

12.
Using the yeast two-hybrid system, we identified the mu 2 subunit of the clathrin adaptor complex 2 as a protein interacting with the C-tail of the alpha 1b-adrenergic receptor (AR). Direct association between the alpha 1b-AR and mu 2 was demonstrated using a solid phase overlay assay. The alpha 1b-AR/mu 2 interaction occurred inside the cells, as shown by the finding that the transfected alpha 1b-AR and the endogenous mu 2 could be coimmunoprecipitated from HEK-293 cell extracts. Mutational analysis of the alpha 1b-AR revealed that the binding site for mu 2 does not involve canonical YXX Phi or dileucine motifs but a stretch of eight arginines on the receptor C-tail. The binding domain of mu 2 for the receptor C-tail involves both its N terminus and the subdomain B of its C-terminal portion. The alpha 1b-AR specifically interacted with mu 2, but not with the mu 1, mu 3, or mu 4 subunits belonging to other AP complexes. The deletion of the mu 2 binding site in the C-tail markedly decreased agonist-induced receptor internalization as demonstrated by confocal microscopy as well as by the results of a surface receptor biotinylation assay. The direct association of the adaptor complex 2 with a G protein-coupled receptor has not been reported so far and might represent a common mechanism underlying clathrin-mediated receptor endocytosis.  相似文献   

13.
The plasma membrane dopamine transporter (DAT) has an essential role in terminating dopaminergic neurotransmission by reuptake of dopamine into the presynaptic neurons. Therefore, the amount of DAT at the cell surface is a critical determinant of DAT function. In this study, we examined the role of the carboxyl terminus of DAT in trafficking of the transporter through the biosynthetic pathway to the plasma membrane. Live cell fluorescence microscopy and cell surface biotinylation were used to study the effects of systematic deletions and alanine substitutions in the carboxyl terminus on DAT localization. It was found that alanine substitutions of Lys-590 and Asp-600 significantly delayed the delivery of DAT to the plasma membrane because of retention of DAT in the endoplasmic reticulum (ER). Most surprising, mutation of Gly-585 to alanine completely blocked the exit of DAT from the ER and surface expression of the transporter. The effect of these three mutations on ER export of DAT was demonstrated in porcine aortic endothelial cells and the immortalized neuronal cell line 1RB3AN27. In primary cultures of rat embryonic midbrain neurons, DAT G585A, K590A, and D600A mutants were restricted to the cell soma and did not traffic to the dendrites or axonal processes. These data are consistent with the model whereby the local conformation and/or intramolecular interactions of the sequences of the DAT carboxyl terminus proximal to the last transmembrane domain are essential for the ER export of the transporter.  相似文献   

14.
We identified a truncated form (38-117) of GEC1 that interacts with the C-tail of the human kappa opioid receptor (hKOR) by yeast two-hybrid screening. GEC1-(38-117) did not interact with the C-tail of the mu or delta opioid receptors. GEC1, a 117-amino acid protein (Pellerin, I., Vuillermoz, C., Jouvenot, M., Ordener, C., Royez, M., and Adessi, G. L. (1993) Mol. Cell Endocrinol. 90, R17-R21), is highly homologous to GABARAP, GATE-16, and Apg8/aut7, all members of the microtubule associated protein (MAP) family. In pull-down assays, GST-GEC1 interacted directly with the hKOR C-tail, full-length hKOR, and tubulin. When expressed in Chinese hamster ovary (CHO) cells, GEC1 co-immunoprecipitated with FLAG-hKOR. Expression of GEC1 greatly increased total and cell-surface KOR but not mu or delta opioid receptors. GEC1 expression slightly reduced U50,488H-promoted down-regulation, without affecting ligand binding affinity, receptor-G protein coupling, or U50,488H-induced desensitization and internalization. HA-GEC1 expressed in CHO cells was localized in the Golgi apparatus and endoplasmic reticulum (ER). When cells were pulsed with [35S]Met/Cys, GEC1 expression enhanced the level of the mature form (55-kDa band) of FLAG-hKOR at 4, 8, and 22 h after pulse without affecting the precursors (39- and 45-kDa bands), indicating that GEC1 facilitates trafficking of FLAG-hKOR from the ER/Golgi to plasma membranes. GEC1 interacted with N-ethylmaleimide-sensitive factor (NSF) in pull-down assays and co-immunoprecipitated with NSF in rat brain extracts. The interaction with NSF may contribute to GEC1 effects. This is the first report on biological functions of GEC1 and the first demonstration that a GPCR interacts with a protein of the MAP family. The interaction is important for trafficking of the receptor in the biosynthesis pathway.  相似文献   

15.
Truncations at the carboxyl termini of G protein-coupled receptors result in defective receptor biogenesis and comprise a number of inherited disorders. In order to evaluate the structural role of the C-terminus in G protein-coupled receptor biogenesis, we generated a series of deletion and substitution mutations in the dopamine D1 receptor and visualized receptor subcellular localization by fusion to a green fluorescent protein. Alanine substitutions of several hydrophobic residues within the proximal C-terminus resulted in receptor transport arrest in the ER. Agonist binding and coupling to adenylyl cyclase was also abolished. In contrast, substitutions conserving C-terminal hydrophobicity produced normal cell surface receptor expression, binding, and stimulatory function. A mechanism for the role of the C-terminus in D1 receptor transport was investigated by searching for candidate protein interactions. The D1 receptor was found to co-precipitate and associate in vitro directly with the gamma-subunit of the COPI coatomer complex. In vitro pull-down assays confirmed that only the D1 C-terminus is required for COPI association, and that identical mutations causing disruption of receptor transport to the cell surface also disrupted binding to COPI. Furthermore, conservative mutations in the D1 C-terminus restored COPI association just as they restored cell surface transport. These results suggest that association between the coatomer complex and hydrophobic residues within the proximal C-terminus of the D1 receptor may serve an important role in receptor transport.  相似文献   

16.
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.  相似文献   

17.
The signaling property of metabotropic glutamate receptor 1alpha (mGlu1alpha) is different from that of short-form splice variants. This could be caused by the exposure of a cluster of positively charged amino acid residues, RRKK, in the proximal C-tail which is thought to be masked by the long C-tail of mGlu1alpha. We found that the RRKK residues, when exposed, attenuate Gq coupling and decrease the basal activity and the surface expression of mGlu1, in agreement with previous results. Moreover, these residues abolish the Gi/o coupling of mGlu1, but do not affect glutamate-induced dimeric rearrangement and protein kinase A-dependent modulation of mGlu1. These results suggest that the RRKK residues do not inhibit the conformational change upon glutamate binding and protein accessibility to the intracellular loops where G-protein coupling occurs, but rather act as an inhibitory domain against G-protein coupling in a different manner depending on the type of G protein.  相似文献   

18.
In humans, thromboxane (TX) A(2) signals through two TXA(2) receptor (TP) isoforms, termed TPalpha and TPbeta, that diverge exclusively within the carboxyl terminal cytoplasmic domains. The amino terminal extracellular region of the TPs contains two highly conserved Asn (N)-linked glycosylation sites at Asn(4) and Asn(16). While it has been established that impairment of N-glycosylation of TPalpha significantly affects ligand binding/intracellular signalling, previous studies did not ascertain whether N-linked glycosylation was critical for ligand binding per se or whether it was required for the intracellular trafficking and the functional expression of TPalpha on the plasma membrane (PM). In the current study, we investigated the role of N-linked glycosylation in determining the functional expression of TPalpha, by assessment of its ligand binding, G protein coupling and intracellular signalling properties, correlating it with the level of antigenic TPalpha protein expressed on the PM and/or retained intracellularly. From our data, we conclude that N-glycosylation of either Asn(4) or Asn(16) is required and sufficient for expression of functionally active TPalpha on the PM while the fully non-glycosylated TPalpha(N4,N16-Q4,Q16) is almost completely retained within the endoplasmic reticulum (ER) and remains functionally inactive, failing to associate with its coupling G protein Galpha(q) and, in turn, failing to mediate phospholipase (PL) Cbeta activation.  相似文献   

19.
To find novel cytoplasmic binding partners of the alpha1D-adrenergic receptor (AR), a yeast two-hybrid screen using the alpha1D-AR C terminus as bait was performed on a human brain cDNA library. Alpha-syntrophin, a protein containing one PDZ domain and two pleckstrin homology domains, was isolated in this screen as an alpha1D-AR-interacting protein. Alpha-syntrophin specifically recognized the C terminus of alpha1D- but not alpha1A- or alpha1B-ARs. In blot overlay assays, the PDZ domains of syntrophin isoforms alpha, beta1, and beta2 but not gamma1 or gamma2 showed strong selective interactions with the alpha1D-AR C-tail fusion protein. In transfected human embryonic kidney 293 cells, full-length alpha1D- but not alpha1A- or alpha1B-ARs co-immunoprecipitated with syntrophins, and the importance of the receptor C terminus for the alpha1D-AR/syntrophin interaction was confirmed using chimeric receptors. Mutation of the PDZ-interacting motif at the alpha1D-AR C terminus markedly decreased inositol phosphate formation stimulated by norepinephrine but not carbachol in transfected HEK293 cells. This mutation also dramatically decreased alpha1D-AR binding and protein expression. In addition, stable overexpression of alpha-syntrophin significantly increased alpha1D-AR protein expression and binding but did not affect those with a mutated PDZ-interacting motif, suggesting that syntrophin plays an important role in maintaining receptor stability by directly interacting with the receptor PDZ-interacting motif. This direct interaction may provide new information about the regulation of alpha1D-AR signaling and the role of syntrophins in modulating G protein-coupled receptor function.  相似文献   

20.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding interactions of members of the arrestin family with the formyl peptide receptor (FPR), a member of the GPCR family of receptors. Peptides representing the unphosphorylated and phosphorylated carboxyl terminus of the FPR were synthesized and bound to polystyrene beads via a biotin/streptavidin interaction. Using fluorescein-conjugated arrestins, binding interactions between arrestins and the bead-bound FPR carboxyl terminus were analyzed by flow cytometry. Arrestin-2 and arrestin-3 bound to the FPR carboxyl-terminal peptide in a phosphorylation-dependent manner, with K(d) values in the micromolar range. Binding of visual arrestin, which binds rhodopsin with high selectivity, was not observed. Arrestin-2-(1--382) and arrestin-3-(1--393), truncated mutant forms of arrestin that display phosphorylation-independent binding to intact receptors, were also observed to bind the bead-bound FPR terminus in a phosphorylation-dependent manner, but with much greater affinity than the full-length arrestins, yielding K(d) values in the 5--50 nm range. Two additional arrestin mutants, which are full-length but display phosphorylation-independent binding to intact GPCRs, were evaluated for their binding affinity to the FPR carboxyl terminus. Whereas the single point mutant, arrestin-2 R169E, displayed an affinity similar to that of the full-length arrestins, the triple point mutant, arrestin-2 I386A/V387A/F388A, displayed an affinity more similar to that of the truncated forms of arrestin. The results suggest that the carboxyl terminus of arrestin is a critical determinant in regulating the binding affinity of arrestin for the phosphorylated domains of GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号