首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated whether the interaction between isolates of Candida albicans (n=7), Candida parapsilosis (n=3), Candida krusei (n=2), Candida dubliniensis (n=1) and sertraline, a typical selective serotonin reuptake inhibitor, alters candidal virulence. Sertraline treatment of Candida spp. significantly (P<0.05) affected hyphal elongation, phospholipase activity, production of secreted aspartyl proteinases and fungal viability. In addition, monocyte-derived macrophages (MDMs) treated with sertraline reduced inhibition of blastoconidia germination in comparison to MDMs alone. In conclusion, our findings suggest that the interaction between sertraline and Candida spp. may also diminish the virulence properties of this fungal pathogen in vivo.  相似文献   

2.
Gene disruption is a powerful genetic tool that can define pathogenic or virulence factors. In the past two years gene disruption approaches have been used to identify fungal virulence genes. The capsule genes, an alpha subunit of G protein and certain kinases of Cryptococcus neoformans have clearly been demonstrated to be associated with pathogenicity. In Candida albicans at least four genes involved in hyphal formation have been disrupted and tested for virulence. In other fungi, such as Histoplasma capsulatum, however, more efficient gene disruption methods need to be developed before such approaches can be regularly used for identifying virulence genes.  相似文献   

3.
4.
5.
Virulence genes in the pathogenic yeast Candida albicans   总被引:9,自引:0,他引:9  
In recent years, the incidence of fungal infections has been rising all over the world. Although the amount of research in the field of pathogenic fungi has also increased, there is still a need for the identification of reliable determinants of virulence. In this review, we focus on identified Candida albicans genes whose deletant strains have been tested in experimental virulence assays. We discuss the putative relationship of these genes to virulence and also outline the use of new different systems to examine the precise effect in virulence of different genes.  相似文献   

6.
Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.  相似文献   

7.
Yu  Qilin  Ma  Tianyu  Ma  Congcong  Zhang  Biao  Li  Mingchun 《Mycopathologia》2019,184(5):573-583
Mycopathologia - Candida albicans is one of the most important fungal pathogens. Hyphal development is required for the virulence of this pathogen. Our previous study has revealed that Spf1, an ER...  相似文献   

8.
The relationship between the morphology and virulence of Candida albicans has aroused interest in the study of the proteins involved in its morphogenesis. We present virulence data for one important element in fungal morphogenesis-septins. We disrupted CaCDC10 and studied the virulence in a mouse infection model and the different steps followed by the fungus during the infection: adherence to epithelial cells, organ colonisation, macrophage phagocytosis, and host survival. We found the altered subcellular localisation of Int1--a C. albicans adhesin- in the septin null mutants. The Int1 mislocalisation and the defects in the cell wall of defective CaCdc10 strains permit us to propose a model for explaining the biological meaning of the absence of virulence presented by these septin mutants.  相似文献   

9.
10.
Posttranslational modifications of proteins drive a wide variety of cellular processes in eukaryotes, regulating cell growth and division as well as adaptive and developmental processes. With regard to the fungal kingdom, most information about posttranslational modifications has been generated through studies of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, where, for example, the roles of protein phosphorylation, glycosylation, acetylation, ubiquitination, sumoylation, and neddylation have been dissected. More recently, information has begun to emerge for the medically important fungal pathogens Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, highlighting the relevance of posttranslational modifications for virulence. We review the available literature on protein modifications in fungal pathogens, focusing in particular upon the reversible peptide modifications sumoylation, ubiquitination, and neddylation.  相似文献   

11.
Proposed herein is a mechanism for virulence by Candida albicans based upon this organism's ability to produce high levels of pyruvate, potentially resulting in localized tissue ketosis and undermining the normal defensive function of neutrophil myeloperoxidase. Neutrophils, a key component of our innate defense against microbial infections, seem to play a particularly important role protecting us against fungal agents such as C. albicans. In this regard, it is myeloperoxidase which is central to many of the antimicrobial properties of neutrophils. We have previously shown that metabolic ketones inactivate myeloperoxidase and impair phagocytosis. Thus, production of pyruvate by C. albicans may indeed be a significant virulence factor.  相似文献   

12.
Anti-fungal therapy at the HAART of viral therapy   总被引:5,自引:0,他引:5  
HIV-positive patients receiving combination therapy (highly active anti-retroviral treatment, HAART) suffer significantly fewer oral infections with the opportunistic fungal pathogen Candida albicans than non-HAART-treated patients. One component of HAART is an inhibitor of the HIV proteinase, the enzyme required for correct processing of retroviral precursor proteins. It would appear that HIV proteinase inhibitors also have a direct effect on one of the key virulence factors of C. albicans, the secreted aspartic proteinases (Saps). This suggests that the reduction in C. albicans infections in HIV-positive patients might not be solely the result of improved immunological status but could also be caused by the HAART treatment directly inhibiting Candida proteinases.  相似文献   

13.
14.
The fungal kingdom is vast, spanning ~1.5 to as many as 5 million species diverse as unicellular yeasts, filamentous fungi, mushrooms, lichens, and both plant and animal pathogens. The fungi are closely aligned with animals in one of the six to eight supergroups of eukaryotes, the opisthokonts. The animal and fungal kingdoms last shared a common ancestor ~1 billion years ago, more recently than other groups of eukaryotes. As a consequence of their close evolutionary history and shared cellular machinery with metazoans, fungi are exceptional models for mammalian biology, but prove more difficult to treat in infected animals. The last common ancestor to the fungal/metazoan lineages is thought to have been unicellular, aquatic, and motile with a posterior flagellum, and certain extant species closely resemble this hypothesized ancestor. Species within the fungal kingdom were traditionally assigned to four phyla, including the basal fungi (Chytridiomycota, Zygomycota) and the more recently derived monophyletic lineage, the dikarya (Ascomycota, Basidiomycota). The fungal tree of life project has revealed that the basal lineages are polyphyletic, and thus there are as many as eight to ten fungal phyla. Fungi that infect vertebrates are found in all of the major lineages, and virulence arose multiple times independently. A sobering recent development involves the species Batrachochytrium dendrobatidis from the basal fungal phylum, the Chytridiomycota, which has emerged to cause global amphibian declines and extinctions. Genomics is revolutionizing our view of the fungal kingdom, and genome sequences for zygomycete pathogens (Rhizopus, Mucor), skin-associated fungi (dermatophytes, Malassezia), and the Candida pathogenic species clade promise to provide insights into the origins of virulence. Here we survey the diversity of fungal pathogens and illustrate key principles revealed by genomics involving sexual reproduction and sex determination, loss of conserved pathways in derived fungal lineages that are retained in basal fungi, and shared and divergent virulence strategies of successful human pathogens, including dimorphic and trimorphic transitions in form. The overarching conclusion is that fungal pathogens of animals have arisen repeatedly and independently throughout the fungal tree of life, and while they share general properties, there are also unique features to the virulence strategies of each successful microbial pathogen.  相似文献   

15.
In recent years, the study of lipid signalling networks has significantly increased. Although best studied in mammalian cells, lipid signalling is now appreciated also in microbial cells, particularly in yeasts and moulds. For instance, microbial sphingolipids and their metabolizing enzymes play a key role in the regulation of fungal pathogenicity, especially in Cryptococcus neoformans, through the modulation of different microbial pathways and virulence factors. Another example is the quorum sensing molecule (QSM) farnesol. In fact, this QSM is involved not only in mycelial growth and biofilm formation of Candida albicans, but also in many stress related responses. In moulds, such as Aspergillus fumigatus, QSM and sphingolipids are important for maintaining cell wall integrity and virulence. Finally, fungal cells make oxylipins to increase their virulence attributes and to counteract the host immune defences. In this review, we discuss these aspects in details.  相似文献   

16.
Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.   总被引:14,自引:0,他引:14  
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.  相似文献   

17.
18.
19.
Ashbya gossypii is a riboflavin-overproducing filamentous fungus that is closely related to unicellular yeasts such as Saccharomyces cerevisiae. With its close ties to yeast and the ease of genetic manipulation in this fungal species, A. gossypii is well suited as a model to elucidate the regulatory networks that govern the functional differences between filamentous growth and yeast growth, especially now that the A. gossypii genome sequence has been completed. Understanding these networks could be relevant to related dimorphic yeasts such as the human fungal pathogen Candida albicans, in which a switch in morphology from the yeast to the filamentous form in response to specific environmental stimuli is important for virulence.  相似文献   

20.
The human fungal pathogen Candida albicans has many morphological forms. Recent advances in genomics and cell biology are providing an improved understanding of the molecular regulation of cell shape, and providing insights into the relationships between morphogenesis and virulence. This understanding may improve our ability to develop strategies to combat Candida infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号