首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to investigate the production of oxidative damage in homogenized kidney, liver and brain of spontaneously hypertensive rats (SHR), as well as the involvement of angiotensin (Ang) II in this process. Groups of 12-week-old SHR and Wistar Kyoto rats (WKY) were given 10 mg/kg/day losartan in the drinking water during 14 days. Other groups of WKY and SHR without treatment were used as controls. The production of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were determined. No significant difference in TBARS was observed between untreated SHR or WKY rats; GSH content was lower in the liver but higher in the brain of SHR compared to WKY rats. In tissues from the SHR group, SOD and Gpx activities were reduced, whereas CAT activity was slightly increased in kidney. TBARS levels did not change in WKY rats after losartan administration, but were reduced in SHR liver and brain. Losartan treatment decreased GSH content in WKY kidney, but increased GSH in SHR liver. The activity of the antioxidant enzymes was not modified by losartan in WKY rats; however, their activities increased in tissues from treated SHR. The lower activity of antioxidant enzymes in tissues from hypertensive rats compared to those detected in normotensive controls, indicates oxidative stress production. Ang II seems to play no role in this process in normotensive animals, although AT1 receptor blockade in SHR enhances the enzymatic activity indicating that Ang II is implicated in oxidative stress generation in the hypertensive animals.  相似文献   

2.
Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar–Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.  相似文献   

3.
Hyperhomocysteinemia is often associated with an increase in blood pressure. However our previous study has shown that methionine supplementation induced an increase in blood pressure in Wistar-Kyoto (WKY) rats and a decrease in blood pressure in spontaneously hypertensive rats (SHR) with significant differences in plasma homocysteine (Hcy) metabolites levels. Previously liver antioxidant status has been shown to be decreased in SHR compared to WKY rats. It has been suggested that oxidative stress may predispose to a decrease in NO bioavailability and induce the flux of Hcy through the liver transsulfuration pathway. Thus the aim of this study was 1) to investigate the effect of methionine supplementation on NO-derived metabolites in plasma and urine 2) to investigate whether abnormalities in Hcy metabolism may be responsible for the discrepancies observed between WKY rats and SHR concerning blood pressure and 3) to investigate whether a methionine-enriched diet, differently modified plasma and liver antioxidant status in WKY rats an SHR. We conclude that the increase in blood pressure in WKY rats is related to high plasma cysteine levels and is not due to a decrease in NO bioavailability and that the decrease in blood pressure in SHR is associated with high plasma GSH levels after methionine supplementation. So GSH synthesis appears to be stimulated by liver oxidative stress and GSH is redistributed into blood in SHR. So the great GSH synthesis can be rationalized as an autocorrective response that leads to a decreased blood pressure in SHR.  相似文献   

4.
Vascular heme oxygenase (HO) metabolizes heme to form carbon monoxide. Carbon monoxide inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. We reported HO-1-mediated endothelial dysfunction in Dahl salt-sensitive hypertension. Previous studies suggested that salt-sensitive hypertensive rats, but not spontaneously hypertensive rats (SHR), display endothelial dysfunction. This study examines the hypothesis that HO-1-mediated arteriolar endothelial dysfunction develops in deoxycorticosterone acetate (DOCA)-salt hypertensive (DOCA) rats, but not in SHR. Uninephrectomized (isoflurane anesthesia) male Sprague-Dawley rats received DOCA injections and saline drinking solution for 4 wk. Rats subjected to sham surgery received vehicle injections and tap water. Blood pressure was elevated in DOCA rats and SHR compared with sham and Wistar-Kyoto (WKY) groups. Aortic HO-1 expression and blood carboxyhemoglobin levels were elevated in the DOCA group, but not in SHR. In isolated gracilis muscle arterioles, ACh caused concentration-related vasodilation in all groups, with attenuated maximum responses in DOCA, but not in SHR, arterioles. Acute pretreatment with an inhibitor of HO, chromium mesoporphyrin, restored ACh-induced responses in DOCA arterioles to sham levels. ACh responses remained the same in SHR and WKY arterioles after chromium mesoporphyrin treatment. These data show that HO-1 levels and activity are increased and arteriolar responses to ACh are decreased in DOCA rats, but not in SHR. Furthermore, in DOCA arterioles, an inhibitor of HO restores ACh-induced vasodilation to sham levels. These results suggest that elevated HO-1 levels and activity, not resulting from hypertension per se, contribute to endothelial dysfunction in DOCA rats.  相似文献   

5.
The effects of age and hypertension on the antioxidant defence systems and the lipid peroxidation in rat isolated hepatocytes were studied. Four different age groups (1,3,6 and 12 months) were considered in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. Age-associated changes were observed on vitamin E status, glutathione (GSH) level, MDA formation and glutathione peroxidase (GSH-Px) activity in both strains. Maximal levels or activities of these parameters were found at 3 and 6 months, except for MDA which was low at 3 months. Then, a fall was observed at 12-month-old compared to 6-month values. In addition, GSH-Px activity was significantly lower in SHR than in WKY rats, except at the age of one month. The decrease of this enzyme activity could induce an increased cellular generation of radical species and lipid peroxidation, which might be link to hypertension.  相似文献   

6.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p<0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p<0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p<0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p<0.03), and further increment was observed in diabetic SHR (p<0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p<0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

7.
J Sáiz  B Lara  A Torres  A Sánchez 《Life sciences》1987,41(20):2261-2268
The effects of high sodium intake (drinking 1% NaCl), DOCA and DOCA + 1%NaCl for 6 weeks on renal alpha 1- and alpha 2-adrenoceptors and on systolic blood pressure (SBP) were examined in young spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). On normal sodium intake, SHR rats had higher renal alpha 1 (p less than .001) and alpha 2-adrenoceptor densities (p less than .001) and SBP (p less than .001) than WKY rats. Although, WKY rats given either 1% NaCl, DOCA, and DOCA + 1% NaCl developed hypertension after 6 weeks of treatment, only 1% NaCl administration for the same period produced an increase in the alpha 1- and alpha 2-adrenoceptor densities when compared to the control (p less than .01 and p less than .001, respectively). In the SHR rats, to the contrary, ingestion of 1% NaCl and DOCA + 1% NaCl increased the already elevated alpha 2-adrenoceptor density (p less than .001) and SBP even more in this strain after 6 weeks of treatment. Equilibrium dissociation constants (KD), however, were similar for both classes of receptors in experimental and control rats. This study indicates that postweaning exposure of the WKY and SHR rats to a high salt treatment and DOCA can influence the renal alpha-adrenoceptor densities. Although the functional significance of the changes is unclear, it is reasonable to speculate that postweaning exposure to a hypertensinogenic stimuli such as a 1% NaCl and/or DOCA may ultimately interfere with the functional development of the kidney differently in rats genetically predisposed to hypertension (SHR) from normotensive (WKY) rats.  相似文献   

8.
Due to the potential for dietary fat source to alter plasma lipids and tissue antioxidant status, we hypothesized that blends of saturated, n-6 and n-3 fats with cholesterol would affect LDL and tissue susceptibility to in vitro oxidation. The effects of dietary fat blends of butter (B), beef tallow (T), soybean oil (SBO) or menhaden oil (MO) and cholesterol on systolic blood pressure (SBP), plasma lipoproteins and tissue susceptibility to glutathione (GSH) depletion and lipid peroxidation (TBARS) were examined in spontaneously hypertensive (SHR) and Wistar Kyoto (WKY) rats. SBP in SHRs was higher (p < 0.001) than in WKYs at 13-weeks of age but was not altered by dietary fat or cholesterol. LDL- and HDL-cholesterol were greater (p < 0.001) in WKY than SHR. LDL-cholesterol and (VLDL7- + LDL-cholesterol)/HDL-cholesterol ratios were reduced in MO vs. B, T and SBO groups. HDL-cholesterol levels tended to be lower and greater in B and MO groups, respectively vs. T and SBO groups. Initial LDL fluorescence was greater (p < 0.001) in high- vs. low-cholesterol groups. The change in LDL fluorescence was reduced (p < 0.001) in high-cholesterol groups, and MO vs. B, T and SBO rats. MO fed rats had reduced (p < 0.001) RBC, heart and liver GSH depletion and reduced (p < 0.01) tissue TBARS and RBC MDA production. In summary, a moderate level of dietary MO did not increase tissue and LDL in vitro oxidizability in SHR and WKY rats. High dietary cholesterol exhibited a protective effect against in vitro oxidation of LDL and selected tissues.  相似文献   

9.
Oxidative stress plays an important role in arterial hypertension and propionyl-L-carnitine (PLC) has been found to protect cells from toxic reactive oxygen species. In this work, we have evaluated the antioxidant capacity of chronic PLC treatment in spontaneously hypertensive rats (SHR) by measuring the activity of antioxidant enzymes and the lipid peroxidation in liver and cardiac tissues. The activity of glutathione peroxidase was decreased in liver and cardiac tissues of SHR when compared with their normotensive controls, Wistar- Kyoto (WKY) rats, this alteration being prevented by PLC treatment. Glutathione reductase activity was increased in hypertensive rats and no effect was observed after the treatment. No significant changes in superoxide dismutase activity were observed among all experimental groups. Liver of hypertensive rats showed higher catalase activity than that of normotensive rats, and PLC enhanced this activity in both rat strains. Thiobarbituric acid reactive substances, determined as a measure of lipid peroxidation, were increased in SHR compared with WKY rats, and PLC treatment decreased these values not only in hypertensive rats but also in normotensive ones. The content of carnitine in serum, liver and heart was higher in PLC-treated rats, but PLC did not prevent the hypertension development in young SHR. In addition, triglyceride levels, which were lower in SHR than WKY rats, were reduced by chronic PLC treatment in both rat strains. These results demonstrate: i) the hypotriglyceridemic effect of PLC and ii) the antioxidant capacity of PLC in SHR and its beneficial use protecting tissues from hypertension-accompanying oxidative damage.  相似文献   

10.
1. The present study was undertaken to localize and characterize bradykinin (BK) binding sites in brains from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR).2. Serial sections of brains were cut from adult WKY and SHR and specific [125I-Tyr0]bradykinin ([125I-Tyr0]BK) binding was determined using in vitro quantitative receptor autoradiographic techniques.3. Specific binding of [125I Tyr0]BK was localized in the medulla oblongata to the regions of the nucleus of the solitary tract (NTS), area postrema (AP), dorsal motor nucleus of the vagus (X), and caudal subnucleus of the spinal trigeminal nucleus in both strains of rat. The specific binding (85–90% of total binding) was of high affinity and saturable with K D values in the range of 100 pM and a B max of 0.75 fmol per mg tissue equivalent in the NTS–X–AP complex of both the WKY and SHR. In competition studies, the rank order of potencies was similar in both strains with BK = Lys-BK > icatibant >>> DesArg9-BK. The B2 receptor antagonist icatibant inhibited [125I-Tyr0]BK binding with a K i value of 0.63 ± 0.19 nM in WKY and 0.91 ± 0.73 nM in SHR, while K i values for the B> 1 receptor agonist DesArg9-BK were 1475 ± 1055 and 806 ± 362 nM in WKY and SHR, respectively.4. Our finding of specific high-affinity [125I-Tyr0]BK B2 binding sites in the NTS, AP, and the X of WKY and SHR is important because these brain areas are associated with central cardiovascular regulation. However, alterations in BK B2 receptors in the medulla that could contribute to the hypertensive state in the SHR were not detected.  相似文献   

11.
12.
In this report, we demonstrate that soleus muscle of spontaneously hypertensive rats (SHR) had significantly lower protein levels of apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) as well as significantly higher protein levels of second mitochondria-derived activator of caspase (Smac) and procaspase-8 compared to normotensive Wistar-Kyoto (WKY) rats. In addition, soleus muscle from hypertensive rats had significantly increased caspase-8 proteolytic enzyme activity as well as significantly elevated reactive oxygen species (ROS) generation and higher hydrogen peroxide (H2O2) content. There was no change in the protein levels of the antioxidant enzymes, catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD). Interestingly, ARC protein migrated at approximately 32 kDa in SHR but at 30 kDa in WKY rat muscle; possibly indicating a post-translational modification. These results demonstrate that soleus muscle of hypertensive rats display a pro-apoptotic phenotype and augmented ROS generation.  相似文献   

13.
Spontaneously hypertensive rats (SHR) have a higher level of oxidative stress and exhibit a greater depressor response to a superoxide scavenger, tempol, than normotensive Wistar-Kyoto rats (WKY). This study determined whether an increase in oxidative stress with a superoxide/NO donor, molsidomine, would amplify the blood pressure in SHR. Male SHR and WKY were given molsidomine (30 mg.kg(-1).day(-1)) or vehicle (0.01% ethanol) for 1 wk, and blood pressure, renal hemodynamics, nitrate and nitrite excretion (NOx), renal superoxide production, and expression of renal antioxidant enzymes, Mn- and Cu,Zn-SOD, catalase, and glutathione peroxidase (GPx), were measured. Renal superoxide and NOx were higher in control SHR than in WKY. Molsidomine increased superoxide by approximately 35% and NOx by 250% in both SHR and WKY. Mean arterial blood pressure (MAP) was also higher in control SHR than WKY. Molsidomine increased MAP by 14% and caused renal vasoconstriction in SHR but reduced MAP by 16%, with no effect on renal hemodynamics, in WKY. Renal expression of Mn- and Cu,Zn-SOD was not different between SHR and WKY, but expression of catalase and GPx were approximately 30% lower in kidney of SHR than WKY. The levels of Mn- and Cu,Zn-SOD were not increased with molsidomine in either WKY or SHR. Renal catalase and GPx expression was increased by 300-400% with molsidomine in WKY, but there was no effect in SHR. Increasing oxidative stress elevated blood pressure further in SHR but not WKY. WKY are likely protected because of higher bioavailable levels of NO and the ability to upregulate catalase and GPx.  相似文献   

14.
The present study aimed to investigate whether l-carnitine (LC) protects the vascular endothelium and tissues against oxidative damage in hypertension. Antioxidant enzyme activities, glutathione and lipid peroxidation were measured in the liver and heart of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Nitrite and nitrate levels and total antioxidant status (TAS) were evaluated in plasma, and the expression of endothelial nitric oxide synthase (eNOS) and p22phox subunit of NAD(P)H oxidase was determined in aorta. Glutathione peroxidase activity was lower in SHR than in WKY rats, and LC increased this activity in SHR up to values close to those observed in normotensive animals. Glutathione reductase and catalase activities, which were higher in SHR, tended to increase after LC treatment. No differences were found in the activity of superoxide dismutase among any animal group. The ratio between reduced and oxidized glutathione and the levels of lipid peroxidation were respectively decreased and increased in hypertensive rats, and both parameters were normalized after the treatment. Similarly, LC was able to reverse the reduced plasma nitrite and nitrate levels and TAS observed in SHR. We found no alterations in the expression of aortic eNOS among any group; however, p22phox mRNA levels showed an increase in SHR that was reversed by LC. In conclusion, chronic administration of LC leads to an increase in hepatic and cardiac antioxidant defense and a reduction in the systemic oxidative process in SHR. Therefore, LC might increase NO availability in SHR aorta by a reduction in superoxide anion production.  相似文献   

15.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p < 0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p < 0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p < 0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p < 0.03), and further increment was observed in diabetic SHR (p < 0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p < 0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

16.
In this study the possible role of hippocampal dynorphin in the development of hypertension in spontaneously hypertensive rats (SHR) was investigated by determining dynorphin A (1–8) (DN A (1–8)) levels in hippocampus in 16 week old SRH, Wistar Kyoto (WKY) controls and SHR treated with antihypertensive drugs as well as DOCA-salt hypertensive Sprague Dawley (SD) rats, using radioimmunoassay (RIA). We found that DN A (1–8) was decreased significantly in both dorsal (–68%) and ventral (–58%) hippocampus in SHR compared with WKY rats. Treatment with hydralazine and guanethidine (25 mg/kg/24 hr of each drug in drinking water) for 8 weeks to prevent the development of hypertension in young SHR had no effect on this low hippocampal dynorphin level. We failed to find significant changes in hippocampal DN A (1–8) level in DOCA-salt hypertensive rats. The low level of hippocampal dynorphin existed before the development of hypertension in 6 day neonatal SHR (–73%). Hippocampal Met-enkephalin was unchanged in all experimental groups except for a slight decrease in neonatal SHR. The results establish a genetic difference in the hippocampal dynorphin system of SHR compared with WKY, the significance of which, for the development of hypertension, remains to be investigated.  相似文献   

17.
18.
The present study was undertaken to identify whether inflammation or oxidative stress is the primary abnormality in the kidney in spontaneously hypertensive rats (SHR). Renal inflammation and oxidative stress were evaluated in 2- and 3-week-old prehypertensive SHR and age-matched genetically normotensive control Wistar-Kyoto (WKY) rats. Blood pressure was similar in WKY and SHR rats at 2 and 3 weeks, of age. Renal inflammation (macrophage and nuclear factor-κB) was elevated in SHR at 3 weeks, but not at 2 weeks, of age compared with age-matched WKY rats. Renal oxidative stress (nitrotyrosine, 8-hydroxy-2′-deoxyguanosine and p47phox) was also clearly elevated in 3-week-old SHR compared with age-matched WKY rats. Additionally, NADPH oxidase subunit p47phox was found elevated in 2-week-old SHR compared to age-matched WKY rats. Moreover, antioxidant (N-acetyl-l-cysteine and Tempol) treatment reduced renal inflammation in prehypertensive SHR. We therefore conclude that the oxidative stress appears before inflammation as a primary abnormality in the kidney in prehypertensive SHR.  相似文献   

19.
Vitamin E treatment was found to lower blood pressure, and increase membrane fluidity in rats. The objectives of this study were to investigate the effects of the antioxidant, vitamin E, on the blood pressure and erythrocyte membrane fluidity in spontaneously hypertensive (SHR) and normotensive (WKY) rats. Membrane fluidity was assessed using spin labeling technique and electron paramagnetic resonance (EPR) spectroscopy. Two different spin labels were used in this study, 5-doxylstrearic acid (5-SASL) and 16-doxylstearic acid (16-SASL). The rats were given vitamin E, 3 days/week for 3 weeks and blood pressure was measured once weekly, using the tail-cuff method. Subsequently, blood was taken via heart puncture and erythrocytes were prepared for spin labeling. The fluidity of the membrane in the nonpolar region of erythrocytes from hypertensive rats was found quite different from that of normal rats as judged by the spectra of 16-SASL. The values of maximum splitting parameter of the EPR spectra of the spin label 5-SASL incorporated in erythrocyte membrane from both SHR and WKY rats, and the effects of vitamin E on membrane fluidity were compared. The maximum splitting parameter calculated from EPR spectra was larger for SHR than WKY rats. Additionally, the maximum splitting parameter calculated for vitamin E treated SHR and WKY rats were lower than those of their respective controls. As expected, the blood pressure of the SHR rats was found to be higher than that of the WKY rats. Vitamin E treated SHR and WKY rats showed significantly lower blood pressure than their controls.  相似文献   

20.
Nitric oxide (NO) and reactive oxygen species (ROS) have fundamentally important roles in the regulation of vascular tone and remodeling. Although arterial disease and endothelial dysfunction alter NO and ROS levels to impact vasodilation and vascular structure, direct measurements of these reactive species under in vivo conditions with flow alterations are unavailable. In this study, in vivo measurements of NO and H2O2 were made on mesenteric arteries to determine whether antioxidant therapies could restore normal NO production in spontaneously hypertensive rats (SHR). Flow was altered from approximately 50-200% of control in anesthetized Wistar-Kyoto rats (WKY) and SHR by selective placement of microvascular clamps on adjacent arteries while NO and H2O2 were directly measured with microelectrodes. Relative to WKY, SHR had significantly increased baseline NO and H2O2 concentrations (2,572 +/- 241 vs. 1,059 +/- 160 nM, P < 0.01; and 26 +/- 7 vs. 7 +/- 1 microM, P < 0.05, respectively). With flow elevation, H2O2 but not NO increased in SHR; NO but not H2O2 was elevated in WKY. Apocynin and polyethylene-glycolated catalase decreased baseline SHR NO and H2O2 to WKY levels and restored flow-mediated NO production. Suppression of NAD(P)H oxidase with gp91ds-tat decreased SHR H2O2 to WKY levels. Addition of topical H2O2 to increase peroxide to the basal concentration measured in SHR elevated WKY NO to levels observed in SHR. The results support the hypothesis that increased vascular peroxide in SHR is primarily derived from NAD(P)H oxidase and increases NO concentration to levels that cannot be further elevated with increased flow. Short-term and even acute administration of antioxidants are able to restore normal flow-mediated NO signaling in young SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号