首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Patterns of (sup14)CO(inf2) incorporation into molecular components of the thermophilic cyanobacterial mat communities inhabiting hot springs located in Yellowstone National Park and Synechococcus sp. strain C1 were investigated. Exponentially growing Synechococcus sp. strain C1 partitioned the majority of incorporated (sup14)CO(inf2) into protein, low-molecular-weight metabolites, and lipid fractions (45, 22, and 18% of total incorporated carbon, respectively). In contrast, mat cores from various hot springs predominantly accumulated polyglucose during periods of illumination (between 77 and 85% of total incorporated (sup14)CO(inf2)). Although photosynthetically active, mat photoautotrophs do not appear to be rapidly growing, since we also detected only limited synthesis of macromolecules associated with growth (i.e., protein and rRNA). To test the hypothesis that polysaccharide reserves are fermented in situ under the dark anaerobic conditions cyanobacterial mats experience at night, mat cores were prelabeled with (sup14)CO(inf2) under illuminated conditions and then transferred to dark anaerobic conditions. Radiolabel in the polysaccharide fraction decreased by 74.7% after 12 h, of which 58.5% was recovered as radiolabeled acetate, CO(inf2), and propionate. These results indicate tightly coupled carbon fixation and fermentative processes and the potential for significant transfer of carbon from primary producers to heterotrophic members of these cyanobacterial mat communities.  相似文献   

2.
Photosynthesis by Synechococcus lividus, the sole oxygenic phototroph inhabiting the surface of the 55°C cyanobacterial mat in Mushroom Spring, Yellowstone National Park, causes superoxic and alkaline conditions which promote glycolate photoexcretion. At O2 concentrations characteristic of the top 2 mm of mat during the day, up to 11.8% of NaH14CO3 fixed in the light was excreted, and glycolate accounted for up to 58% of the excreted photosynthate. Glycolate was neither incorporated nor metabolized by S. lividus, but it was incorporated by filamentous microorganisms in the mat. Incubation of mat samples with NaH14CO3 resulted in labeling of both S. lividus and filaments, but the addition of nonradioactive glycolate increased the level of 14C in the aqueous phase and decreased the extent of labeling of filaments. This suggests that cross-feeding of glycolate from S. lividus to filamentous heterotrophs occurs and that underestimation of the extent of photoexcretion is probable.  相似文献   

3.
A variety of contemporary techniques were used to investigate the vertical distribution of thermophilic unicellular cyanobacteria, Synechococcus spp., and their activity within the upper 1-mm-thick photic zone of the mat community found in an alkaline siliceous hot spring in Yellowstone National Park in Wyoming. Detailed measurements were made over a diel cycle at a 61°C site. Net oxygenic photosynthesis measured with oxygen microelectrodes was highest within the uppermost 100- to 200-μm-thick layer until midmorning, but as the day progressed, the peak of net activity shifted to deeper layers, stabilizing at a depth of 300 μm from midday throughout the afternoon. Examination of vertical thin sections by bright-field and autofluorescence microscopy revealed the existence of different populations of Synechococcus which form discrete bands at different vertical positions. Denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA gene segments from horizontal cryosections obtained at 100-μm-thick vertical intervals also suggested vertical stratification of cyanobacterial, green sulfur bacterium-like, and green nonsulfur bacterium-like populations. There was no evidence of diel migration. However, image analysis of vertical thin sections revealed the presence of a narrow band of rod-shaped Synechococcus cells in which the cells assumed an upright position. These upright cells, located 400 to 800 μm below the surface, were observed only in mat samples obtained around noon. In mat samples obtained at other time points, the cells were randomly oriented throughout the mat. These combined observations reveal the existence of a highly ordered structure within the very thin photic zone of this hot spring microbial mat, consisting of morphologically similar Synechococcus populations that are likely to be differentially adapted, some co-occurring with green sulfur bacterium-like populations, and all overlying green nonsulfur bacterium-like populations.  相似文献   

4.
5.
Among the various microbial mats that develop in geothermal hot springs in solfataric fields, colorless sulfur-turf (ST)—macroscopic white bundles consisting of large sickle-shaped bacteria belonging to Aquificales and elemental sulfur particles–develops in a limited environment of geothermal effluent containing hydrogen sulfide with neutral pH and low in oxygen. Photosynthetic cyanobacterial mat (CY) often grow just downstream of chemolithotrophic ST, or they coexist with ST where the temperature is slightly lower. Knowledge of the environmental regimes of these microbial mats will lead to better understanding of the distribution of thermophilic microorganisms on the Earth and provide clues about evolutionary processes in the microbial ecosystems of the Precambrian era. We studied the environmental parameters of the boundary zone and examined the distribution of these types of mats and measured the in situ growth rates of the microorganisms composing them. In situ examination revealed that temperature and Eh constrain the development of the microbial mats. At the boundary between ST and CY, temperature and Eh ranged between 51.1°C and 63.2°C and between ?112 mV and ?25 mV, respectively. These environmental parameters were not significantly different among Japanese, Yellowstone (North American), and Icelandic hot spring effluents with genetically similar thermal sulfur oxidizers. Sickle-shaped bacteria rarely coexist with cyanobacteria, although they can potentially grow in some CY environments. This suggests that the boundary between ST and CY might be partly determined by exclusive ecological competition.  相似文献   

6.
Polyclonal antiserum prepared against Chloroflexus aurantiacus reacted with all Chloroflexus strains examined but not with other morphologically or physiologically similar bacteria. Only one of three filament types in a natural hot spring cyanobacterial mat reacted with this antiserum. Reacting filaments remained antigenically positive deep within the mat in material estimated to be several years old.  相似文献   

7.
Oscillatoria terebriformis, a thermophilic cyanobacterium, carried out a diel vertical movement pattern in Hunter's Hot Springs, Oreg. Throughout most daylight hours, populations of O. terebriformis covered the surface of microbial mats in the hot spring outflows below an upper temperature limit of 54°C. Upon darkness trichomes moved downward by gliding motility into the substrate to a depth of 0.5 to 1.0 mm, where the population remained until dawn. At dawn the population rapidly returned to the top of the mats. Field studies with microelectrodes showed that the dense population of O. terebriformis moved each night across an oxygen-sulfide interface, entering a microenvironment which was anaerobic and reducing, a dramatic contrast to the daytime environment at the mat surface where oxygenic photosynthesis resulted in supersaturated O2. Laboratory experiments on motility with the use of sulfide gradients produced in agar revealed a negative response to sulfide at concentrations similar to those found in the natural mats. The motility response may help explain the presence of O. terebriformis below the mat surface at night. The movement back to the surface at dawn appears to be due to a combination of phototaxis, photokinesis, and the onset of oxygenic photosynthesis which consumes sulfide.  相似文献   

8.
Microelectrodes were used to measure oxygen, pH, and oxygenic photosynthetic activity in a hot spring microbial mat (Octopus Spring, Yellowstone National Park), where the cyanobacterium Synechococcus lividus and the filamentous bacterium Chloroflexus aurantiacus are the only known phototrophs. The data showed very high biological activities in the topmost layers of the microbial mat, resulting in extreme values for oxygen and pH. At a 1-mm depth at a 55°C site, oxygen and pH reached 900 μM and 9.4, respectively, just after solar noon, whereas anoxic conditions with a pH of 7.2 were measured before sunrise. Although diurnal changes between these extremes occurred over hours during a diurnal cycle, microbial activity was great enough to give the same response in 1 to 2 min after artificial shading. Oxygenic photosynthesis was confined to a 0.5- to 1.1-mm layer at sites with temperatures at or above about 50°C, with maximum activities in the 55 to 60°C region. The data suggest that S. lividus is the dominant primary producer of the mat.  相似文献   

9.
狮子头热泉菌席样品环境总DNA提取方法的比较研究   总被引:1,自引:0,他引:1  
通过对狮子头热泉7个环境菌席样品所提取的总DNA进行纯度检测、提取得率计算和DGGE分析,比较了3种直接和1种间接DNA提取方法。结果表明:综合利用多种裂解方式比单一裂解方式更能充分释放环境DNA;其中3种方法获得的DNA片段能够进行后续16S rDNA扩增;针对同一样品,不同方法提取的环境DNA,可获得不同DGGE群落指纹图谱;间接提取法提取的总DNA,能更好地反映狮子头热泉菌席的微生物多样性。  相似文献   

10.
11.
The carbohydrate fraction of a hot spring sulfur-turf bacterial mat was shown to contain cellulose by the examination of neutral sugar composition, methylation analysis, and the identification of free oligosacchrides obtained from an acetolyzate of the desulfurized sulfur-turf mat. This suggested that the sulfur-oxidizing bacteria composing the sulfur-turf were producers of cellulose.  相似文献   

12.
The fate of representative fermentation products (acetate, propionate, butyrate, lactate, and ethanol) in hot spring cyanobacterial mats was investigated. The major fate during incubations in the light was photoassimilation by filamentous bacteria resembling Chloroflexus aurantiacus. Some metabolism of all compounds occurred under dark aerobic conditions. Under dark anaerobic conditions, only lactate was oxidized extensively to carbon dioxide. Extended preincubation under dark anaerobic conditions did not enhance anaerobic catabolism of acetate, propionate, or ethanol. Acetogenesis of butyrate was suggested by the hydrogen sensitivity of butyrate conversion to acetate and by the enrichment of butyrate-degrading acetogenic bacteria. Accumulation of fermentation products which were not catabolized under dark anaerobic conditions revealed their importance. Acetate and propionate were the major fermentation products which accumulated in samples collected at temperatures ranging from 50 to 70°C. Other organic acids and alcohols accumulated to a much lesser extent. Fermentation occurred mainly in the top 4 mm of the mat. Exposure to light decreased the accumulation of acetate and presumably of other fermentation products. The importance of interspecies hydrogen transfer was investigated by comparing fermentation product accumulation at a 65°C site, with naturally high hydrogen levels, and a 55°C site, where active methanogenesis prevented significant hydrogen accumulation. There was a greater relative accumulation of reduced products, notably ethanol, in the 65°C mat.  相似文献   

13.
The diurnal variation in the microgradients of O2, H2S, and Eh were studied in the benthic cyanobacterial mats of a hypersaline desert lake (Solar Lake, Sinai). The results were related to light intensity, light penetration into the mat, temperature, pH, NH4+, photosynthetic activity, pigments, and the zonation of the microbial community. Extreme diurnal variation was found, with an O2 peak of 0.5 mM at 1 to 2 mm of depth below the mat surface during day and a H2S peak of 2.5 mM at 2 to 3 mm of depth at night. At the O2-H2S interface, the two compounds coexisted over a depth interval of 0.2 to 1 mm and with a turnover time of a few minutes. The photic zone reached 2.5 mm into the mat in summer, and the main 14CO2 light fixation took place at 1 to 2 mm of depth. During winter, light and photosynthesis were restricted to the uppermost 1 mm. The quantitative dynamics of O2 and H2S were calculated from the chemical gradients and from the measured diffusion coefficients.  相似文献   

14.
Rates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73°C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (Km) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available.  相似文献   

15.
16.
Nitrogen fixation (nitrogenase activity, NA) of a microbial mat and a living stromatolite from Cuatro Cienegas, Mexico, was examined over spring, summer, and winter of 2004. The goal of the study was to characterize the diazotrophic community through molecular analysis of the nifH gene and using inhibitors of sulfate reduction and oxygenic and anoxygenic photosynthesis. We also evaluated the role of ultraviolet radiation on the diazotrophic activity of the microbial communities. Both microbial communities showed patterns of NA with maximum rates during the day that decreased significantly with 3-3,4-dichlorophenyl-1′,1′-dimethylurea, suggesting the potential importance of heterocystous cyanobacteria. There is also evidence of NA by sulfur-reducing bacteria in both microbial communities suggested by the negative effect exerted by the addition of sodium molybdate. Elimination of infrared and ultraviolet radiation had no effect on NA. Both microbial communities had nifH sequences that related to group I, including cyanobacteria and purple sulfur and nonsulfur bacteria, as well as group II nitrogenases, including sulfur reducing and green sulfur bacteria.  相似文献   

17.
A shotgun metaproteomics approach was employed to identify proteins in a hot spring microbial mat community. We identified 202 proteins encompassing 19 known functions from 12 known phyla. Importantly, we identified two key enzymes involved in the 3-hydroxypropionate CO2 fixation pathway in uncultivated Roseiflexus spp., which are known photoheterotrophs.  相似文献   

18.
Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by γ-proteobacteria (53 to 64%), followed by β-proteobacteria (18 to 21%) and α-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by α-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of δ-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals.  相似文献   

19.
The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号