首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The classical electrophysiological method to measure the function of the 5-hydroxytryptamine (serotonin) type 3 (5-HT(3)) receptor, a cation-permeable ligand-gated ion channel, is time-consuming and not suitable for high-throughput screening. Therefore, we have optimized the conditions for a sensitive assay suitable to measure 5-HT(3) receptor responses in cell suspension based on aequorin bioluminescence caused by Ca(2+) influx. The assay, carried out in 96-well plates, was applied for the pharmacological characterization of 5-HT(3) receptors on human embryonic kidney (HEK) 293 cells transiently coexpressing apoaequorin and either the human homopentameric 5-HT(3A) receptor or the human heteromeric 5-HT(3A/B) receptor in the same subset of cells. Thus, the luminescence signal originates exclusively from transfected cells, leading to a high signal/noise ratio, a major advantage compared with fluorescence techniques using Ca(2+)-sensitive dyes. The potencies of two 5-HT(3A) receptor agonists and two antagonists as well as the potency and efficacy of serotonin at the heteromeric 5-HT(3A/B) receptor were comparable to those reported using other functional methods. In conclusion, the aequorin assay described here provides a convenient and highly sensitive method for functional characterization of 5-HT(3) receptors that is well suited for high-throughput screening.  相似文献   

2.
Accompanying the advances in basic biology of G protein-coupled receptors (GPCRs) is the practical need among biopharmaceutical companies for sensitive assays to assess GPCR function, particularly formats that are compatible with high-throughput drug screening. Here we describe a novel cell-based assay format for the high-throughput detection of ligands for Gi protein-coupled receptors. Two Gi-GPCRs, mu-opioid receptor (mu-OPR) and 5-hydroxytryptamine receptor la (5HT1aR) are employed as model receptor targets. The key feature of this assay system is the isolation of stable, clonal Chinese hamster ovary (CHO) cell lines that carry three separate expression plasmids: (1) a chimeric Gq/i5 protein (which re-directs a negative Gi-type signal to a positive Gq-type response), (2) a given Gi-GPCR, and (3) a beta-lactamase (beta1a) reporter gene responsive to Gi-GPCR signaling. Cell-based assays built using this format show appropriate rank order of potency among a reference set of receptor agonist and antagonist compounds. Such assays are also robust, reliable, and can be used for industrial-scale applications such as high-throughput screening for drug leads.  相似文献   

3.
Agonists at the µ-opioid receptor are known to produce potent analgesic responses in the clinical setting, therefore, an increased understanding of the molecular interactions of ligands at this receptor could lead to improved analgesics. As historically morphine has been shown to be a poor recruiter of β-arrestin in recombinant cell systems and this can be overcome by the co-expression of GRK2, we investigated the effects of GRK2 co-expression, in a recombinant µ-opioid receptor cell line, on ligand affinity and intrinsic activity in both β-arrestin recruitment and [35S]GTPγS binding assays. We also investigated the effect of receptor depletion in the β-arrestin assay. GRK2 co-expression increased both agonist Emax and potency in the β-arrestin assay. The increase in agonist potency could not be reversed using receptor depletion, supporting that the effects were due to a novel receptor conformation not system amplification. We also observed a small but significant effect on agonist KL values. Potency values in the [35S]GTPγS assay were unchanged; however, inverse agonist activity became evident with GRK2 co-expression. We conclude that this is direct evidence that the µ-opioid receptor is an allosteric protein and the co-expression of signalling molecules elicits changes in its conformation and thus ligand affinity. This has implications when describing how ligands interact with the receptor and how efficacy is determined.  相似文献   

4.
To assess the pharmacodynamic profile of ALEPH-2, a phenylisopropylamine derivative with alleged anxiolytic and hallucinogenic properties, Xenopus laevis oocytes were microinjected with either of the rat cRNA for the 5-HT2A or the 5-HT2C receptor. Concentration-response curves were obtained following the exposure of the oocytes to varying concentrations of either ALEPH-2 or 5-hydroxytryptamine (5-HT) for 10 s. ALEPH-2 is a partial agonist on the 5-HT2A receptor with a similar potency to 5-HT. In contrast, ALEPH-2 is a full 5-HT2C receptor agonist and is about 15-fold less potent than 5-HT. Pre-application of 1 microM ritanserin antagonized the responses induced by 5-HT and ALEPH-2 to the same extent; however, the 5-HT2A receptor is more sensitive to ritanserin blockade than the 5-HT2C receptor.  相似文献   

5.
Abstract

Accompanying the advances in basic biology of G protein-coupled receptors (GPCRs) is the practical need among biopharmaceutical companies for sensitive assays to assess GPCR function, particularly formats that are compatible with high-throughput drug screening. Here we describe a novel cell-based assay format for the high-throughput detection of ligands for G, protein-coupled receptors. Two Gi-GPCRs, μ-opioid receptor (μ-OPR) and 5-hydroxytryptamine receptor la (5HTlaR) are employed as model receptor targets. The key feature of this assay system is the isolation of stable, clonal Chinese hamster ovary (CHO) cell lines that carry three separate expression plasmids: (1) a chimeric Gq/i5 protein (which re-directs a negative Gi-type signal to a positive Gq-type response), (2) a given Gi-GPCR, and (3) a β-lactamase (βla) reporter gene responsive to Gi-GPCR signaling. Cell-based assays built using this format show appropriate rank order of potency among a reference set of receptor agonist and antagonist compounds. Such assays are also robust, reliable, and can be used for industrial-scale applications such as high-throughput screening for drug leads.  相似文献   

6.
A series of 6 tricyclic partial ergoline derivatives was analyzed using radioligand binding assays. Four agents (LY 178210, LY 254089, LY 197205, and LY 197206) display high affinity (Ki less than or equal to 1.3 nM) for 5-hydroxytryptamine1A (5-HT1A) receptor binding sites labeled by [3H]8-hydroxy- 2-(di-n-propylamino) tetralin (8-OH-DPAT) and display greater than or equal to 150 fold selectivity for the 5-HT1A over the 5-HT1D receptor binding site. The most potent agent investigated, LY 178210, is essentially inactive (Ki greater than 1500 nM) at a total of 12 other neurotransmitter receptor binding sites in the brain. Using a forskolin-stimulated adenylate cyclase assay as a model of 5-HT1A receptor function, LY 178210 was found to display partial agonist activity which was blocked by 10(-5) M (-)pindolol. These data indicate that LY 178210 is a potent and selective 5-HT1A receptor partial agonist.  相似文献   

7.
In the rat brain, the presynaptic 5-hydroxytryptamine (5-HT) autoreceptors located on 5-HT terminals correspond to the 5-HT1B subtype. The presence of a 5-HT receptor probably located on 5-HT nerve endings and modulating transmitter release in the human neocortex has been reported, but its detailed pharmacological characterization is not yet available. On the other hand, receptor binding and autoradiographic results indicate that the 5-HT1B receptor subtype is not present in the human brain. We, therefore, studied the modulation of the electrically evoked release of [3H]5-HT by various 5-HT receptor agonists and antagonists in preloaded slices of human neocortex obtained from 18 patients undergoing neurosurgery. The nonselective 5-HT1A/1B/1D receptor agonist 5-carboxamidotryptamine produced a potent inhibition (70% at 0.03 microM) of the electrically evoked release of [3H]5-HT which was blocked by 5-HT receptor antagonists with the following relative order of potency: methiothepin greater than metergoline = methysergide greater than propranolol. The selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin at 0.1 microM did not modify the electrically evoked release of [3H]5-HT. The 5-HT1A/1B receptor agonist RU 24969 was 10 times more potent at inhibiting [3H]5-HT overflow in the rat frontal cortex than in the human neocortex. The potent 5-HT1B receptor antagonist cyanopinodolol did not modify the 5-carboxamidotryptamine-induced inhibition of the electrically evoked release of [3H]5-HT in slices of the human neocortex, but produced by itself a small inhibition of [3H]5-HT overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
(±)-2-Fluoro-2-(2-methyl-4-(((4-methyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methyl)thio)phenoxy)acetic acid (2a) has been prepared and subjected to biological testing against all three subtypes of the PPARs. This compound exhibited agonist effects with EC(50) values of 560 and 55 nM against PPARα and PPARδ, respectively, in a luciferase assay. Moreover, compound (±)-2a also exhibited potent ability to induce oleic acid oxidation in a human myotube cell assay with EC(50)=3.7 nM. Compound (±)-2a can be classified as a dual PPARα/δ agonist with a 10-fold higher potency against the PPARδ receptor than against the PPARα receptor. Molecular modeling studies revealed that both enantiomers of 2a bind to the PPARδ receptor with similar binding energies.  相似文献   

9.
Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.  相似文献   

10.
11.
Serotonin (5-hydroxytryptamine, 5-HT) has been described as a mitogen in a variety of cell types and carcinomas. It exerts its mitogenic effect by interacting with a wide range of 5-HT receptor types. Certain studies suggest that some selective serotonin re-uptake inhibitors promote breast cancer in animals and humans. This study attempts to clarify the role of serotonin in promoting the growth of neoplastic mammary cells. Expression of the 5-HT(2A) serotoninergic receptor subtype in MCF-7 cells was determined by RT-PCR, Western blotting, and immunofluorescence analysis. The mitogenic effect of 5-HT on MCF-7 cells was determined by means of the MTT proliferation assay. We have demonstrated that the 5-HT(2A) receptor subtype is fully expressed in the MCF-7 human breast cancer cell line, in terms of encoding mRNA and receptor protein. Automated sequencing has confirmed that the 5-HT(2A) receptor present in this cell line is identical to the 5-HT(2A) receptor found in human platelets and in human cerebral cortex. Furthermore, this receptor was found by immunofluorescence to be on the plasma membrane. MTT proliferation assays revealed that 5-HT and DOI, a selective 5-HT(2A) receptor subtype agonist, stimulated MCF-7 cell. These results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells. Our data also indicate that 5-HT exerts this positive growth effect on MCF-7 cells through, in part, the 5-HT(2A) receptor subtype, which is fully expressed in this cell line.  相似文献   

12.
A series of 7-substituted melatonin and 1-methylmelatonin analogues were prepared and tested against human and amphibian melatonin receptors. 7-Substituents reduced the agonist potency of all the analogues in the Xenopus laevis melanophore assay, 7-bromomelatonin (5d) and N-butanoyl 7-bromo-5-methoxytryptamine (5f) being the most active compounds, but both were 42-fold less potent than melatonin (1). Whereas all the analogues bind with lower affinity at the human MT(1) receptor than melatonin, 5d, 5f and N-propanoyl 7-bromo-5-methoxytryptamine (5e) show a similar binding affinity to melatonin at the MT(2) receptor and consequently show some MT(2) selectivity. These results suggest that the receptor pocket around C-7 favours binding by an electronegative group, suggesting an electropositive region in this area of the receptor.  相似文献   

13.
Protease-activated receptor-2 (PAR-2) is a tethered-ligand, G-protein-coupled receptor that is activated by proteolytic cleavage or by small peptides derived from its cleaved N-terminal sequence, such as SLIGRL-NH2. To assess specific PAR activity, we developed an immortalized murine PAR-1 (-/-) cell line transfected with either human PAR-2 or PAR-1. A "directed" library of more than 100 PAR agonist peptide analogues was synthesized and evaluated for PAR-2 and PAR-1 activity to establish an in-depth structure-function profile for specific action on PAR-2. The most potent agonist peptides (EC50 = 2-4 microM) had Lys at position 6, Ala at position 4, and pFPhe at position 2; however, these also exhibited potent PAR-1 activity (EC50 = 0.05-0.35 microM). We identified SLIARK-NH2 and SL-Cha-ARL-NH2 as relatively potent, highly selective PAR-2 agonists with EC50 values of 4 microM. Position 1 did not tolerate basic, acidic, or large hydrophobic amino acids. N-Terminal capping by acetyl eliminated PAR-2 activity, although removal of the amino group reduced potency by just 4-fold. At position 2, substitution of Leu by Cha or Phe gave equivalent PAR-2 potency, but this modification also activated PAR-1, whereas Ala, Asp, Lys, or Gln abolished PAR-2 activity; at position 3, Ile and Cha were optimal, although various amino acids were tolerated; at position 4, Ala or Cha increased PAR-2 potency 2-fold, although Cha introduced PAR-1 activity; at position 5, Arg or Lys could be replaced successfully by large hydrophobic amino acids. These results with hexapeptide C-terminal amides that mimic the native PAR-2 ligand indicate structural modes for obtaining optimal PAR-2 activity, which could be useful for the design of PAR-2 antagonists.  相似文献   

14.
The measurement of intracellular calcium response transients in living mammalian cells is a popular functional assay for identification of agonists and antagonists to receptors or channels of pharmacological interest. In recent years, advances in fluorescence-based detection techniques and automation technologies have facilitated the adaptation of this assay to 384-well microplate format high-throughput screening (HTS) assays. However, the cost and time required performing the intracellular calcium HTS assays in the 384-well format can be prohibitive for HTS campaigns of greater than 1 x 10(6) wells. For these reasons, it is attractive to miniaturize intracellular calcium functional assays to the 1536-well microplate format, where assay volumes and plate throughput can be decreased by several fold. The focus of the research described in this article is the miniaturization of an intracellular calcium assay to 1536-well plate format. This was accomplished by modifying the hardware and software of a fluorometric imaging plate reader (FLIPR) to enable transfer of nanoliters of test compound directly to a 1536-well assay plate, and measure the resulting calcium response from all 1536 wells simultaneously. An intracellular calcium functional assay against the rat muscarinic acetylcholine receptor subtype 1 (rmAchR1) G-protein coupled receptor (GPCR) was miniaturized and executed on this modified instrument. In experiments measuring the activity of known muscarinic receptor agonists and antagonists, the miniaturized FLIPR assay gave EC(50) and IC(50) values and rank order potency comparable to the 384-well format assays. Calculated Z' factors for the miniaturized agonist and antagonist assays were, respectively, 0.56 +/- 0.21 and 0.53 +/- 0.22, which were slightly higher (Z'(agonist) = 0.55 +/- 0.33) and lower (Z'(antagonist) = 0.70 +/- 0.18) than the corresponding values in the 384-well assays. A mock agonist HTS campaign against the muscarinic receptor in miniaturized format was able to identify all wells spiked with the rmAchR1 agonist carbachol.  相似文献   

15.
In HEK-293 cells, serotonin (5-hydroxytryptamine, 5-HT) was found to induce cAMP production showing pharmacological characteristics consistent with the 5-HT(7) receptor. The presence of 5-HT(7) (and 5-HT(6)) receptor mRNA was confirmed by RT-PCR. Stable HEK-293 cell lines expressing either wild-type or haemagglutinin (HA)-tagged human 5-HT transporter (SERT) were selected and SERT function was confirmed using [3H]5-HT transport. The presence of SERT caused a 10-fold reduction in the potency of 5-HT-induced cAMP production compared to control cells. Downstream signalling by 5-HT(6/7) receptors could be detected as 5-HT-induced protein kinase A activation and phosphorylation of MAP kinase and CREB using phospho-specific antibodies. SERT inhibitors reversed the reduction in potency of 5-HT-induced cAMP production caused by the presence of SERT, resulting in a concentration-dependent left shift in EC(50) values but also a progressive decrease in the maximal response. Thus, when antidepressants were used to block SERT activity, 5-HT receptor signalling was effectively clamped within a mid-range.  相似文献   

16.
17.
We report the molecular cloning of a fragment of human genomic DNA called S12, containing an open reading frame of 1170 nucleotides, which encodes a receptor for serotonin of 390 amino acids. The receptor function of the S12 protein was demonstrated by functional expression in mouse LS12 cells obtained by stable transfection of Ltk- cells, and LM5S12 cells, derived from LM5 cells (Ltk- cells previously transfected with the M5 muscarinic acetylcholine receptor). Adenylyl cyclase studies showed that the S12 receptor is able to mediate inhibition of adenylyl cyclase in response to serotonin in both types of cells. As studied in LM5S12 cells, the S12 receptor did not promote Ca2+ mobilization from internal stores, nor did it significantly modulate the sustained increase in [Ca2+]i elicited by stimulation of the phospholipase C stimulating M5 acetylcholine receptor. The pharmacologic profile of S12 as seen in adenylyl cyclase assays is as follows: (EC50 in nM): serotonin, full agonist (37 nM), 5-carboxamidotryptamine, full agonist (10 nM), sumatriptan, full agonist (50 nM), metergoline, partial agonist (10 nM), methysergide, partial agonist (40 nM), yohimbine, partial agonist (150 nM), metitepin, antagonist (KB = 0.7 to 1.2 nM). We propose that the human S12 serotonin receptor is a receptor of the 5-hydroxytryptamine1D subtype.  相似文献   

18.
The glycoprotein content of rabies vaccines containing the Pitman-Moore strain of rabies virus was measured by the single radial immunodiffusion assay and correlated with vaccine potency. The variability of this assay was 6.3% for a single vaccine lot tested over a one-year period. Using sera prepared against rabies virus glycoprotein from different strains of virus, the assay gave different values. These differences could be eliminated by using a homologous vaccine strain as an internal reference. Single radial-immunodiffusion values for Pitman-Moore vaccines correlated with the manufacturers' NIH potency assay, but required a mathematical transformation to convert values from one assay to the other. Single radial-immunodiffusion values for Street Alabama Dufferin and Flury-LEP vaccines did not correlate with NIH values. Modification of the single radial immunodiffusion technique and the feasibility of using this assay for the determination of rabies vaccine potency are discussed.  相似文献   

19.
We have studied the effect of guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), a non-hydrolyzable analogue of GTP, on agonist and antagonist binding to bovine hippocampal 5-hydroxytryptamine (5-HT)(1A) receptor in native membranes. Our results show that the specific binding of the agonist is inhibited with increasing concentrations of GTP-gamma-S along with a reduction in binding affinity. In sharp contrast to this, antagonist binding to 5-HT(1A) receptor shows no significant reduction and remains invariant over a large range of GTP-gamma-S concentrations. The binding affinity of the antagonist also remains unaltered. This shows that the agonist and the antagonist differentially discriminate G-protein coupling of 5-HT(1A) receptors from bovine hippocampus.  相似文献   

20.
The phosphate, uracil, and ribose moieties of uracil nucleotides were varied structurally for evaluation of agonist activity at the human P2Y(2), P2Y(4), and P2Y(6) receptors. The 2-thio modification, found previously to enhance P2Y(2) receptor potency, could be combined with other favorable modifications to produce novel molecules that exhibit high potencies and receptor selectivities. Phosphonomethylene bridges introduced for stability in analogues of UDP, UTP, and uracil dinucleotides markedly reduced potency. Truncation of dinucleotide agonists of the P2Y(2) receptor, in the form of Up(4)-sugars, indicated that a terminal uracil ring is not essential for moderate potency at this receptor and that specific SAR patterns are observed at this distal end of the molecule. Key compounds reported in this study include 9, alpha,beta-methylene-UDP, a P2Y(6) receptor agonist; 30, Up(4)-phenyl ester and 34, Up(4)-[1]glucose, selective P2Y(2) receptor agonists; dihalomethylene phosphonate analogues 16 and 41, selective P2Y(2) receptor agonists; 43, the 2-thio analogue of INS37217 (P(1)-(uridine-5')-P(4)-(2'-deoxycytidine-5')tetraphosphate), a potent and selective P2Y(2) receptor agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号