首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of a microbiological autobiographic assay procedure permitted a detailed investigation of the possible role of beauvericin (a toxic ionophoric antibiotic produced by Beauveria bassiana) in the entomopathogenicity of B. bassiana against corn earworm (Heliothis zea) larvae. Analysis of spent media of B. bassiana and the hemolymph of infected and moribund larvae revealed that beauvericin was not present in a soluble form during the time that most (about 90%) larvae died of fungal infection (4 days). Intrahemocoelic injections of up to 6 micrograms of synthetic beauvericin failed to induce any deleterious effects. In addition, although methanol-soluble ionophores, such as valinomycin and bassianolide, were toxic to corn earworm larvae, no methanol-soluble toxin could be detected in the hemolymph of moribund larvae.  相似文献   

2.
The green color of the hemolymph of last instar larvae of the corn earworm, Heliothis zea (Boddie), is caused by the appearance of a blue chromoprotein. This protein (Mr approximately 560,000) is composed of 4 subunits (Mr approximately 150,000). It contains 8.4% lipid and has an equilibrium density of 1.26 g/ml. This protein is absent during all early larval stages, in pupae and in adult animals, but is a major hemolymph protein in 5th instar larvae. Although its physiological function remains unclear, this blue chromoprotein represents the first member of a new class of larval-specific insect lipoproteins.  相似文献   

3.
4.
Plant resistance to insects, specifically antibiosis, offers a biologically, economically, and environmentally sound alternative to pesticides for controlling the corn earworm, Helicoverpa zea (Boddie), in corn, Zea mays L. Our study included a series of experiments to evaluate the effects of resistant and susceptible silks incorporated into pinto bean diets on the infectivity of a nuclear polyhedrosis virus (Elcar) applied to the surface of diet with and without formalin. Neonate, 4- and 8-day-old corn earworm larvae were tested. The combination of Elcar and resistant corn silks increased mortality of the corn earworm neonates. When resistant silks were tested in diet without formalin, the surface of the diet darkened and the neonates tended to burrow into the diet to feed, reducing the amount of virus consumed and hence mortality. After feeding on diets containing resistant silks for 4 or 8 days, earlier and higher mortality was associated with lower weight of larvae that were exposed to Elcar. Elcar caused 49% (diet with formalin) and 87% (diet without formalin) mortality of the 8-day-old larvae that had fed on the resistant silk diets as opposed to 0 and 3% mortality for larvae that had fed on diets without the resistant silks prior to treatment with the virus. Our results demonstrate that resistant corn silks and Elcar are compatible approaches for controlling corn earworm larvae.  相似文献   

5.
Canola (Brassica napus L.) cultivars Oscar and Westar, engineered with a Bacillus thuringiensis (Bt) cryIA(c) gene, were evaluated for resistance to lepidopterous pests, diamondback moth, Plutella xylostella L. (Plutellidae) and corn earworm, Helicoverpa zea (Boddie) (Noctuidae) in greenhouse and field conditions. In greenhouse preference assays conducted at vegetative and flowering plant stages, transgenic plants recorded very low levels of damage. A 100% diamondback moth mortality and 90% corn earworm mortality were obtained on transgenic plants in greenhouse antibiosis assays. The surviving corn earworm larvae on transgenic plants had reduced head capsule width and body weight. Mortality of diamondback moth and corn earworm were 100% and 95%, respectively, at different growth stages (seedling, vegetative, bolting, and flowering) on the transgenic plants in greenhouse tests. In field tests conducted during 1995–1997, plots were artificially infested with neonates of diamondback moth or corn earworm or left for natural infestation. Transgenic plants in all the treatments were highly resistant to diamondback moth and corn earworm larvae and had very low levels of defoliation. Plots infested with diamondback moth larvae had greater damage in both seasons as compared with corn earworm infested plots and plots under natural infestation. After exposure to defoliators, transgenic plants usually had higher final plant stand and produced more pods and seeds than non-transgenic plants. Diamondback moth injury caused the most pronounced difference in plant stand and pod and seed number between transgenic and non-transgenic plants. Our results suggest that transgenic canola could be used for effective management of diamondback moth and corn earworm on canola.  相似文献   

6.
When conidia of Beauveria bassiana are injected into the hemocoel of corn earworm larvae, it appears that a positive correlation exists between exocellular proteolytic activity of the fungus and entomopathological manifestations. Once inside the hemolymph, defense mechanisms (including phagocytosis) are incapable of overcoming the fungus and one important event in a terminal mycocidal cascade involves preferential invasion of the gut wall. Such invasion helps explain the observed inhibition of feeding by infected larvae. Although histopathological changes seen in gut tissues suggest that a gut toxin is produced, evidence for such a toxin could not be obtained in preliminary tests. Biochemical changes are seen in hemolymph components; however, these are viewed as being due to general starvation rather than to specific activities of the fungus, at least up to the time that a general mycosis is established. With the host larva under physiological stress (starvation, nutrient depletion, and, possibly, toxin production in gut tissues) and failure of defense mechanisms, the infection spreads quickly and a terminal mycosis results.  相似文献   

7.
Plant resistance is a useful component of integrated pest management for several insects that are economically damaging to maize, Zea mays L. In this study, 15 experimental lines of maize derived from a backcross breeding program were evaluated for resistance to corn earworm, Helicoverpa zea (Boddie); fall armyworm, Spodoptera frugiperda (J. E. Smith); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.). Experimental line 100-R-3 was resistant in the field to leaf feeding by fall armyworm and line 116-B-10 was resistant in the field to leaf feeding by fall armyworm and leaf and stalk feeding by southwestern corn borer. When corn earworm larvae were fed field harvested silks from experimental line 81-9-B in the laboratory, their pupal weights were significantly lower than the pupal weights of larvae that were fed silks from the resistant control, Zapalote Chico. Maysin levels lower than those commonly associated with corn earworm resistance were present in the resistant experimental line, 107-8-7, indicating a new basis confers resistance to corn earworm in this line. These resistant experimental lines will provide plant breeders with new sources of resistance to lepidopterous insects for the development of improved maize breeding populations.  相似文献   

8.
The hemolymph of last instar larvae of the corn earworm, Helicoverpa zea contains a blue very high-density lipoprotein (VHDL) that is selectively taken up into fat body prior to pupation. Its amino-terminal sequence was determined by Edman degradation, and used to design a degenerate primer for PCR amplification. With 5' and 3' RACE techniques, the entire cDNA coding for VHDL was amplified and sequenced. Conceptual translation reveals a 173 kDa protein that contains a 15 amino acid signal sequence immediately before the experimentally determined N-terminus of the mature protein. The protein contains a typical lipoprotein N-terminal domain, and shows high sequence similarity to vitellogenins from Lepidoptera and other insect species. VHDL mRNA was not detectable in adult H. zea, and antibodies raised against VHDL did not react with adult hemolymph or yolk proteins. Therefore VHDL, although a member of the vitellogenin gene family, seems to be distinct from the vitellogenin expressed in adult females.  相似文献   

9.
Larvae of the Old World corn earworm, Helicoverpa armigera (Hübner), were fed diets containing lyophilized silks from maize genotypes expressing varying levels of maysin, a flavone glycoside known to be toxic to the New World corn earworm, Helicoverpa zea Boddie. Three different H. armigera colonies were tested: a wild-type colony (96-S), a colony selected for resistance to deltamethrin (Del-R), and a colony selected for resistance to the Cry1Ac protoxin of Bacillus thuringiensis (Bt-R). A colony of H. zea was also tested as a control. High-maysin silk diets significantly slowed the growth and arrested the development of larvae from all H. armigera colonies compared with low-maysin silk diets, maysin-lacking silk diets, and no-silk control diets. The effects on the H. armigera and H. zea colonies were similar across maysin levels, although H. zea is a larger insect than H. armigera and this overall size difference was observed. Among the H. armigera colonies, maysin effects were generally similar, although 7-d-old Del-R larvae were significantly smaller than 7-d-old Bt-R and 96-S larvae for one no-silk control and two maysin-containing silk treatments. The toxic effect of maysin on the Bt-R and Del-R colonies suggests that physiological mechanisms of H. armigera resistance to Cry1Ac and deltamethrin do not confer cross-resistance to maysin.  相似文献   

10.
Vegetable and mineral oil, Beauveria bassiana (Balsamo) and Bacillus thuringiensis subsp. kurstaki Berliner were evaluated for control of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae), Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in sweet corn (Zea mays L.). Field experiments in Maine and Massachusetts during 1993 and 1994 evaluated oils and pathogens singly or in combinations, using a single application directly to the top of the silk channel, immediately after pollination. Mineral oil alone provided equal (1993) or better (1994) control compared with corn oil. In both years, mineral or corn oil plus B. thuringiensis resulted in 93-98% marketable ears, compared with 48-52% marketable ears in untreated plots. In three factorial experiments with B. bassiana, B. thuringiensis and corn oil, B. bassiana at 5 x 10(7) conidia per ear provided little or no control while B. thuringiensis and corn oil provided significant though not always consistent control of all three species. The combination of B. thuringiensis and corn oil provided the largest and most consistent reduction in numbers of larvae and feeding damage to ears.  相似文献   

11.
The effect of Dipel 4L in artificial diet on feeding behavior, occurrence on a specific diet, and growth of corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), was assessed in short-term tests. Third-, fourth-, and fifth-stage laboratory-reared and feral corn earworm larvae were evaluated. Arenas used for each assay included a non-Dipel diet, Dipel-containing diet, and a combination of the two diets. Larval activity was observed immediately after exposure to diet and at 6 and 18 h for third instars and at 6, 8, and 24 h for fourth and fifth instars, respectively. Feral and laboratory-reared third, fourth, and feral fifth instars avoided Dipel-treated diet when more suitable food was available. Third and fourth instars consistently preferred non-Dipel-containing diet when presented a choice of foods. Corn earworm growth was delayed when larvae were subjected to Dipel-treated diet in choice and no-choice assays compared with larvae provided untreated diet. Larvae presented a choice of diets grew more rapidly than those presented Dipel-treated diets in no choice arenas. Larval feeding frequency and weight gain were superior when larvae were supplied untreated diet than when restricted solely to a Dipel-treated diet. Larvae presented a choice of diets spent more time feeding and fed more frequently on untreated diet than Dipel-treated food. These data indicate that corn earworm presented a choice of Bacillus thuringiensis (Bt) and non-Bt diets may have an increased probability of completing development compared with those restricted to Bt-laced sources.  相似文献   

12.
The impact of applying edible oils to corn silks on ear-feeding insects in sweet corn, Zea mays L., production was evaluated in 2006 and 2007. Six edible oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix neem oil and nC21 Sunspray Ultrafine, a horticultural mineral oil) were used as the controls for the experiment. Six parameters evaluated in this experiment were corn earworm [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] damage rating, the number of sap beetle [Carpophilus spp. (Coleoptera: Nitidulidae)] adults and larvae, the number of corn silk fly (or picture-winged fly) (Diptera: Ulidiidae) larvae, common smut [Ustilago maydis (D.C.) Corda] infection rate, and corn husk coverage. Among the two control treatments, neem oil reduced corn earworm damage at both pre- and postpollination applications in 2006, but not in 2007, whereas the mineral oil applied at postpollination treatments reduced corn earworm damage in both years. The mineral oil also reduced the number of sap beetle adults, whereas the neem oil applied at postpollination attracted the most sap beetle adults in 2007. Among the six edible oil treatments, the corn and sesame oils applied at postpollination reduced corn earworm damage only in 2007. The application of the peanut oil at postpollination attracted more sap beetle adults in 2006, and more sap beetle larvae in 2007. Olive and neem oils significantly reduced husk coverage compared with the water control in both years. The mineral oil application consistently increased smut infection rate in both 2006 and 2007. Ramifications of using oil treatments in ear pest management also are discussed.  相似文献   

13.
Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the corn earworm, Helicoverpa zea (Boddie), and by the percentage of kernels damaged by the maize weevil, Sitophilus zeamais Motschulsky, and stink bugs [combination of Euschistus servus (Say) and southern green stink bug, Nezara viridula (L.)]. Among the eight inbred lines and two control populations examined, C3S1B73-5b was resistant to corn earworm, maize weevil, and stink bugs. In contrast, C3S1B73-4 was resistant to corn earworm and stink bugs, but not to maize weevil. In a similar manner, the corn hybrid S1W*CML343 was resistant to all three ear-feeding insects, whereas hybrid C3S1B73-3*Tx205 was resistant to corn earworm and maize weevil in both growing seasons, but susceptible to stink bugs in 2005. The silk-feeding bioassay showed that corn earworm developed better on corn silk than did fall armyworm. Among all phenotypic traits examined (i.e., corn ear size, husk extension, and husk tightness), only corn ear size was negatively correlated to corn earworm damage in the inbred lines examined, whereas only husk extension (i.e., coverage) was negatively correlated to both corn earworm and maize weevil damage on the experimental hybrids examined. Such information could be used to establish a baseline for developing agronomically elite corn germplasm that confers multiple ear-feeding insect resistance.  相似文献   

14.
The corn earworm,Helicoverpa zea (Boddie), is a perennial economic pest of field crops in the United States. Maize,Zea mays L., is the major host crop promoting the build-up of devastating corn earworm populations that limit full production of cotton, soybean, peanut, and grain sorghum. Resistance to the corn earworm in maize and in particular sweet maize, would provide an environmentally safe, economical method of control for this pest insect. Antibiotic effects of corn silks on this insect are: small larvae, extended developmental period, and reduced fecundity. Silks from individual maize plants of resistant and susceptible lines and progeny in six generations consisting of parents (P1, P2), F1, F2, and backcrosses BC1.1 (F1 × P1) and BC1.2 (F1 × P2) from each of four crosses were used to determine the genetic basis of the antibiotic resistance of silks to the corn earworm. In the cross of Zapalote Chico × PI340856, genes controlling resistance in the silks to the corn earworm larvae are dominant in PI340856 to those in Zapalote Chico. The cross of Zapalote Chico × GT114 involves parents differing in degree of resistance, and possibly differing for the genetic mechanism by which the resistance is inherited. The inheritance of resistance may involve non-additive (dominance and epistasis) genetic variance. A digenic 6-parameter model indicated (1) the resistance in this cross is controlled by more than one pair of genes and (2) some or all of the genes interact to cause non-allelic interaction. Thus, the resistance in this cross may be controlled by both dominant and recessive genes. The resistance of Zapalote Chico × CI64, an intermediate inbred, is influenced by additive gene effects. The digenic model adequately predicts all generation means of the cross of GT3 × PI340856 except for the F1. Thus, it appears that the additive-dominance model is not satisfactory for this cross involving susceptible and resistant parents. Generation mean analysis indicates that resistance to silk-feeding by corn earworm larvae is under genetic control, but gene action differs from one type of cross to another.  相似文献   

15.
Many of the lepidopterous insects which attack sweet corn, Zea mays L., are susceptible to insecticidal proteins produced by Bacillus thuringiensis ssp. kurstaki (Berliner) (Btk). Transgenic sweet corn expressing a synthetic cry gene for production of a Btk-insecticidal protein may provide a more environmentally acceptable means of sweet corn production. Eight transgenic sweet corn hybrids containing a synthetic gene for CryIA(b) protein production (BT11 event) were evaluated for resistance to the corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J. E. Smith). Laboratory tests revealed that all Btk sweet corn hybrids were highly resistant to leaf and silk feeding by neonate 3 and 6 d old corn earworm larvae. Ear damage in the field to the Btk sweet corn hybrids caused by corn earworm was negligible. All Btk sweet corn hybrids, except Btk 95-0901, were moderately resistant to leaf and silk feeding by the fall armyworm. Survival and weight gain were reduced when neonates were fed excised whorl leaves of the Btk plants. Weight gain, but not survival, was reduced when 3- and 6-d-old fall armyworm larvae were fed excised whorl leaves of the Btk plants. Btk sweet corn hybrids appear to be ideal candidates for use in integrated pest management (IPM) programs for both the fresh and processing sweet corn markets, and their use should drastically reduce the quantity of insecticides currently used to control these pests in sweet corn. With appropriate cultural practices, it is highly unlikely that Btk sweet corn will contribute to the development of resistance to Btk proteins in these insects because of the high toxicity of the Cry proteins expressed in these sweet corn hybrids and the harvest of sweet corn ears from fields before larvae can complete development.  相似文献   

16.
Laboratory studies investigated the interaction between the fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin and sublethal doses of the insecticides imidacloprid and cyromazine when applied to larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say). When second instars were fed potato leaf discs treated with sublethal doses of imidacloprid and a range of doses of B. bassiana, a synergistic action was demonstrated. Similar results were observed when larvae were sprayed directly with B. bassiana conidia and immediately fed leaf discs treated with imidacloprid. No synergistic interaction was detected when larvae were fed leaf discs treated with sublethal doses ofimidacloprid 24 h after application of B. bassiana conidia to larvae. However, a synergistic interaction was detected when larvae were fed leaf discs treated with imidacloprid and sprayed with B. bassiana conidia 24 h later. Although sublethal doses of both imidacloprid and the triazine insect growth regulator (IGR) cyromazine prolonged the duration of the second instar, only imidacloprid interacted with B. bassiana to produce a synergistic response in larval mortality. In leaf consumption studies, the highest dose of B. bassiana tested promoted feeding in inoculated second instars. Feeding was inhibited when larvae were fed foliage treated with sublethal doses of imidacloprid and significantly reduced when fed foliage treated with a sublethal dose of cyromazine. Starvation of larvae for 24 h immediately after B. bassiana treatment produced a similar result to the combined treatment of B. bassiana and imidacloprid and increased the level of mycosis when compared with B. bassiana controls. Imidacloprid treatment affected neither the rate of germination of B. bassiana conidia on the insect cuticle nor the rate at which conidia were removed from the integument after application. The statistical analysis used to detect synergism and the possible role of starvation-induced stress factors underlying the observed synergistic interactions are discussed.  相似文献   

17.
Susceptibility to Cry1Ab toxin from Bacillus thuringiensis (Bt) was determined for 12 field populations of neonate corn earworm, Helicoverpa zea (Boddie), from the United States. Earworm larvae were exposed to artificial diet treated with increasing Bt concentrations, and mortality and growth inhibition were evaluated after 7 d. The range of variation in Bt susceptibility indicated by growth inhibition was very similar to that indicated by mortality. Although interpopulation variation in susceptibility to both proteins was observed, the magnitude of the differences was small (less than or equal to fivefold). These results suggest that the observed susceptibility differences reflect natural variation in Bt susceptibility among corn earworm populations rather than variation caused by prior exposure to selection pressures. Therefore, corn earworms apparently are susceptible to Bt toxins across most of their geographic range.  相似文献   

18.
The entomopathogenic fungus, Nomuraea rileyi, caused 90.5–100% mortality in fourth-instar larvae of the corn earworm, Helicoverpa armigera, when applied at 107 conidia/ml to corn silks, and leaves of soybean, tomato and chrysanthemum. The LT50 was 5.9–6.7 days. The fifth-instar larvae showed a mortality of 94.6% on soil with 20% water content, and 41.7% on 10% water content when the soil surface was sprayed with 108 conidia/ml suspension. Five fungicides, eight insecticides and nine herbicides, which are commonly used in corn fields, were evaluated for inhibition to conidial germination by a paper disk test. Among them, only two fungicides, viz., maneb and propineb, were highly inhibitory, while insecticides and herbicides examined were not inhibitory to the fungus. Field applications of N. rileyi conidial suspension to neonate larvae were found to be as effective as 40.46% carbofuran (EC) at 800-fold dilution in controlling corn earworm based on marketable ears. It is thus suggested that N. rileyi has potential to be a microbial control agent for this insect.  相似文献   

19.
A study was undertaken to isolate entomopathogens of southwestern corn borer, Diatraea grandiosella Dyer, and southern corn stalk borer, Diatraea crambidoides (Grote). Field-collected diapausing larvae of southwestern corn borer (three sites in Mississippi) and southern corn stalk borer (one site in North Carolina), and a laboratory strain of D. grandiosella in the diapause state were maintained in a simulated winter followed by a simulated spring environnent. Few larvae (< or = 6%) collected from any of the field sites died in the winter environment, and most insect mortality (11-25%) occurred after transfer of the larvae to the simulated spring environment. Mortality during the simulated spring period differed among the collection sites, and the highest mortality was recorded for southwestern corn borers from Washington County (25%), followed by Marshall (16%) and Oktibbeha (11%) Counties. A high level of mortality was also observed in southern corn stalk borers during the simulated spring period (27%). No viruses were observed, but a number of bacteria, microsporidia, and fungi were isolated from both southwestern corn borer and southern corn stalk borer larvae and pupae. In most instances, numerous bacterial taxa were isolated from cadavers, but on some occasions a single taxon predominated. The most prevalent bacterial taxon from larval and pupal cadavers was Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilppel-Balz, but Bacillus spp., Pseudomonas aeruginosa (Schroeter) Migula, and Serratia marcescens Bizio were frequently isolated as well. Few fungi (1-7%) were recovered from southwestern corn borer and southern corn stalk borer larvae and pupae. The most common entomopathogenic taxon isolated was Beauveria bassiana (Balsamo) Vuillemin from southern corn stalk borer larvae. Microsporidia were not isolated from southern corn stalk borers. However, Nosema spp. were isolated from southwestern corn borer cadavers from Washington (15%), Marshall (1%), and Oktibbeha (3%) Counties in Mississippi. In addition, we observed parasitism of southern corn stalk borer larvae by Macrocentrus cingulum Reinhard (Hymenoptera: Braconidae). No parasitism of southwestern corn borers was observed. Isolates of Bacillus, Beauveria, Entercoccus, Nosema, Pseudomonas and Serratia were all pathogenic to southwestern corn borer larvae under controlled environmental conditions, and with the exception of B. bassiana, these are novel pathogens of Diatraea corn borers.  相似文献   

20.
Lycotoxin I, from the wolf spider (Lycosa carolinensis), is an amphipathic pore-forming peptide that has antimicrobial and anti-insect activity. Constitutive expression of a lycotoxin I modified for oral toxicity to insects in tobacco (Nicotiana tabacum) conferred significantly enhanced resistance to larvae of the corn earworm (Helicoverpa zea) and cigarette beetle (Lasioderma serricorne). Gene expression levels of modified lycotoxin I were negatively correlated to the survival of corn earworm larvae. In addition, pathogenic symptoms caused by Pseudomonas syringae pathovar tabaci and Alternaria alternata on the modified lycotoxin I-expressing leaves were significantly less severe than on wild type leaves. These results indicate that modified lycotoxin I expression in tobacco can potentially protect leaf tissue from a broad spectrum of pests and pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号