首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken hepatocytes synthesize glucose and fatty acids at rates which are faster than rat hepatocytes. The former also consume exogenous lactate and pyruvate at a much faster rate and, in contrast to rat hepatocytes, do not accumulate large quantities of lactate and pyruvate by aerobic glycolysis. α-Cyano-4-hydroxycinnamate, an inhibitor of pyruvate transport, causes lactate and pyruvate accumulation by chicken hepatocytes. Glucagon and N6,O2′-dibutyryl adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) convert pyruvate kinase (EC 2.7.1.40) of rat hepatocytes to a less active form. This effect explains, in part, inhibition of glycolysis, inhibition of lipogenesis, stimulation of gluconeogenesis, and inhibition of the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment by these compounds. In contrast, pyruvate kinase of chicken hepatocytes is refractory to inhibition by glucagon or dibutyryl cyclic AMP. Rat liver is known to have predominantly the type L isozyme of pyruvate kinase and chicken liver predominantly the type K. Thus, only the type L isozyme appears subject to interconversion between active and inactive forms by a cyclic AMP-dependent, phosphorylation-dephos-phorylation mechanism. This explains why the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment of chicken hepatocytes is insensitive to cyclic AMP. However, glucagon and dibutyryl cyclic AMP inhibit net glucose utilization, inhibit fatty acid synthesis, inhibit lactate and pyruvate accumulation in the presence of α-cyano-4-hydroxycinnamate, and stimulate gluconeogenesis from lactate and dihydroxyacetone by chicken hepatocytes. Thus, a site of action of cyclic AMP distinct from pyruvate kinase must exist in the glycolytic-gluconeogenic pathway of chicken liver.  相似文献   

2.
Gluconeogenesis from lactate by isolated hepatocytes suspended in a low bicarbonate medium is effectively inhibited by the hypoglycemic agent dichloroacetate. With this medium dichloroacetate suppresses the accumulation of the components of the malateaspartate shuttle, limits mitochondrial utilization of cytoplasmic reducing equivalents, and makes the availability of pyruvate and/or oxaloacetate limiting for gluconeogenesis. Much less inhibition is observed with hepatocytes suspended in a medium (Krebs?Henseleit saline) containing physiological concentrations of bicarbonate. No inhibition is observed with Krebs-Henseleit saline supplemented with lysine as a source of amino groups for the malate-aspartate shuttle. Thus, dichloroacetate inhibition of gluconeogenesis is observed only when hepatocytes are incubated in a medium deficient in bicarbonate and amino acids. This means that the action of dichloroacetate as a hypoglycemi agent is best explained by stimulation of peripheral tissue utilization of glucose and potential precursors for hepati gluconeogenesis rather than by direct inhibition of hepatic gluconeogenesis.  相似文献   

3.
Chloroquine (50 μm) is rapidly taken up by isolated hepatocytes in a temperature-dependent manner. It inhibits glucose synthesis from lactate, but not from pyruvate or dihydroxyacetone. The inhibition is reversed by lysine or ammonia but not by oleate or carnitine. Ammonia inhibits chloroquine uptake by the hepatocytes but lysine does not. Chloroquine also inhibits urea synthesis, the release of ninhydrin-reacting substances, the accumulation of amino acids, and the lactate-dependent accumulation of glutamate. Ethanol oxidation in the presence of lactate is also inhibited, and this too is reversed by lysine. Chloroquine increases the redox state of the cytosolic compartment, as evidenced by lactate-to-pyruvate ratios, of hepatocytes prepared from both 48-h fasted and meal-fed rats. The above findings are consistent with chloroquine entering the lysosomes of the hepatocytes and inhibiting proteolysis by raising the lysosomal pH. Isolated hepatocytes are deficient in amino acids and, chloroquine inhibition of proteolysis prevents replenishment of the amino acid pools. Thus, chloroquine prevents reconstitution of the malate-aspartate shuttle required for the movement of reducing equivalents into the mitochondrion during lactate gluconeogenesis, ethanol oxidation, and glycolysis. The metabolic competency of freshly isolated hepatocytes, therefore, depends on the replenishment of amino acid pools by lysosomal breakdown of endogenous protein. Furthermore, chloroquine uptake may be an index of lysosomal function with isolated hepatocytes.  相似文献   

4.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

5.
DNA polymerases and DNA ligases have been studied during development of the amphibian, axolotl. Three forms of DNA polymerase, I, II, and III, with sedimentation coefficients in sucrose of 9, 6, and 3.1 S, respectively, have been found in the axolotl egg. The activity of these three DNA polymerases is unchanged during early embryonic development. The activity of DNA polymerase III then increases significantly, beginning at the tailbud stage, while the activity of DNA polymerase II increases at the larval stage. DNA polymerase I does not show significant variations during this time. On the basis of their catalytic properties, it appears that DNA polymerases I and II are α-type DNA polymerases whereas DNA polymerase III is a β-type enzyme. Two different DNA ligases are found in the axolotl, one showing a sedimentation coefficient in sucrose of 8.2 S (heavy form) and the other, 6 S (light form). The 6 S enzyme is the major DNA ligase activity found in the egg before and after fertilization. Its activity then decreases during embryonic development. It can be observed again, as the only DNA ligase activity, in some adult tissues. The 8.2 S enzyme appears during the first division cycle of the fertilized egg, is present at all stages of embryonic development, and is absent from the adult tissues tested. Properties of the two DNA ligases at different stages of embryonic development have also been compared.  相似文献   

6.
Benzoic acid, p-tert.-butylbenzoic acid, and a structurally related hypolipidemic agent SC-33459 were found to inhibit glucose synthesis by hepatocytes isolated from 48-h fasted rats as well as fatty acid synthesis by hepatocytes isolated from meal-fed rats. Glucose synthesis was less sensitive than fatty acid synthesis. Benzoic acid was the least effective inhibitor of both processes; SC-33459 and p-tert.-butylbenzoic acid were very potent inhibitors with similar efficacy. Glycine prevented the inhibition of fatty acid synthesis caused by benzoic acid, but had no effect on that caused by p-tert.-butylbenzoic acid. Octanoate opposed the inhibitory effects of both benzoic acid and p-tert.-butylbenzoic acid. Oxidation of [1-14C]oleate to ketone bodies and acid-soluble radioactive products was inhibited by both p-tert.-butylbenzoic acid and SC-33459. Preincubation of hepatocytes with SC-33459 was required for the latter effect, suggesting catabolism of this compound may be involved. SC-33459 is a p-tert.-butylphenyl derivative which should be readily converted to p-tert.-butylbenzoic acid by β oxidation. Both p-tert.-butylbenzoic acid and SC-33459 decreased citrate levels dramatically. All three compounds reduced CoA and acetyl-CoA levels and increased medium-chain acyl-CoA ester levels. p-tert.-Butylbenzoic acid and SC-33459 also increased long-chain acyl-CoA ester levels. The increase in medium-chain acyl-CoA levels presumably reflects benzoyl-CoA formation from benzoic acid and p-tert.-butylbenzoyl-CoA formation from p-tert.-butylbenzoic acid and SC-33459. Inhibition of glucose and fatty acid synthesis by these compounds may be due to effects on specific enzymes or to CoA sequestration.  相似文献   

7.
The involvement of glycoconjugates in the insulin-receptor interactions in mouse liver is tested by digestions of membranes with various enzymes. Trypsin decreased the binding of [125I]insulin to liver membranes. After digestion with β-galactosidase no “high affinity” receptor sites could be detected. The effects observed with plant lectins confirm the involvement of galactoconjugates in the insulin binding process. Sophora japonica and Ricinus communis lectins (with galactose specificity) and concanavalin A largely inhibit the binding process of insulin and those effects concern the “high affinity” receptor sites. Other lectins (wheat germ agglutinin, Dolichos) and enzymes (α-l-fucosidase, β-N-acetyl-hexosaminidase and neuraminidase) are without effect on insulin binding.Comparative studies performed on diabetic mouse liver membrane (KK mice), previously characterized by decreased number of insulin receptors, are in good agreement with qualitatively similar receptor sites in both non-diabetic (control) and diabetic mice. Effects of enzymes and lectins yielded same results as compared to control membranes. Plasma membrane proteins and glycoproteins in both types of mouse are indistinguishable with respect to enzymic and chemical analysis. Sodium dodecyl sulphate acrylamide gel electrophoresis shows identical patterns. Moreover, the decrease in the number of insulin receptors is easily reversed with diet restriction. These data are consistent with the similarity of receptor sites in control and diabetic liver membrane.  相似文献   

8.
9.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

10.
The transient kinetics of aldehyde reduction by NADH catalyzed by liver alcohol dehydrogenase consist of two kinetic processes. This biphasic rate behavior is consistent with a model in which one of the two identical subunits in the enzyme is inactive during the reaction at the adjacent protomer. Alternatively, enzyme heterogeneity could result in such biphasic behavior. We have prepared liver alcohol dehydrogenase containing a single major isozyme; and the transient kinetics of this purified enzyme are biphasic.Addition of two [14C]carboxymethyl groups per dimer to the two “reactive” sulfhydryl groups (Cys46) yields enzyme which is catalytically inactive toward alcohol oxidation. Alkylated enzyme, as initially isolated by gel filtration chromatography at pH 7·5, forms an NAD+-pyrazole complex. However, the ability to bind NAD+-pyrazole is rapidly lost in pH 8·75 buffer; therefore, our alkylated preparations, as isolated by chromatography at pH 8·75, are inactive toward NAD+-pyrazole complex formation. We have prepared partially inactivated enzyme by allowing iodoacetic acid to react with liver alcohol dehydrogenase until 50% of the NAD+-pyrazole binding capacity remains; under these reaction conditions one [14C]carboxymethyl group is added per dimer. This partially alkylated enzyme preparation is isolated by gel filtration and has been aged sufficiently to lose NAD+-pyrazole binding ability at alkylated subunits. When solutions of native liver alcohol dehydrogenase and partially alkylated liver alcohol dehydrogenase containing the same number of unmodified active sites are allowed to react with substrate under single turnover conditions, partially alkylated enzyme is only half as reactive as native enzyme. This indicates that some molecular species in partially alkylated liver alcohol dehydrogenase that react with pyrazole and NAD+ during the active site titration do not react with substrate. These data are consistent with a model in which a subunit adjacent to an alkylated protomer in the dimeric enzyme is inactive toward substrate. In addition, NAD+-pyrazole binding at the protomers adjacent to alkylated subunits is slowly lost so that 75% of the enzyme-NAD+-pyrazole binding capacity is lost in 50% alkylated enzyme. These data supply strong evidence for subunit interactions in liver alcohol dehydrogenase.Binding experiments performed on partially alkylated liver alcohol dehydrogenase indicate that coenzyme binding is normal at a subunit adjacent to an alkylated protomer even though active ternary complexes cannot be formed. One hypothesis consistent with these results is the unavailability of zinc for substrate binding at the active site in subunits adjacent to alkylated protomers in monoalkylated dimer.  相似文献   

11.
DNA-dependent RNA polymerase has been studied in adult mouse liver and mouse blastocysts. The enzyme from mouse liver was resolved into three enzyme forms by DEAE-Sephadex chromatography. Two of the forms, IA and IB, are insensitive to α-amanitin, have low Mn2+Mg2+ activity ratios, and are optimally active at low ionic strength. Form II is inhibited by α-amanitin, has a higher Mn2+Mg2+ activity ratio, and is most active at high ionic strength. An optimal reaction temperature of 37 ° C was found for all enzyme forms. All of the isolated enzyme forms are inhibited by the exotoxin from Bacillus thuringiensis and the inhibition can be partially reversed by increased ATP levels. Forms IA and IB are most active with native template while form II prefers denatured DNA.The blastocyst RNA polymerase activity exhibits similar requirements for divalent metal ions and ionic strength to the purified liver enzymes. The maximum inhibition of blastocyst RNA polymerase obtained with α-amanitin and exotoxin differs from that observed for purified liver enzymes but is similar to the inhibition of liver homogenate. However, the concentrations of inhibitor required for maximum inhibition by α-amanitin and exotoxin is different for the blastocyst and liver homogenate enzymes.  相似文献   

12.
S Yanagi  V R Potter 《Life sciences》1977,20(9):1509-1519
The changes in activity of five enzymes including ornithine decarboxylase (ODC), tyrosine aminotransferase (TAT), thymidine kinase (TK), ornithine aminotransferase (OAT) and serine dehydratase (SDH) in the early stage of the regenerating rat liver have been studied under a controlled feeding and lighting schedule. The first three enzyme activities were stimulated sequentially by partial hepatectomy. The earliest response was observed in ODC activity. A significant increase in this enzyme activity was observed at 2 hrs and the maximal level was at 4 hrs after the operation. TAT began to increase at 4 hrs and the maximal level was at 8 hrs. The TK activity was induced at about 24 hrs and the highest value was at 48 hrs after partial hepatectomy.A significant decrease in OAT activity was observed at 24 hrs after the operation and subsequently. Although a decrease in SDH activity was also observed this decrease did not seem to correlate directly with the regeneration process, since a lowered level of the enzyme activity was also found in the sham operated group.  相似文献   

13.
A reconstituted "open" system comprising respiring mitochondria and actively glycolyzing muscle extract was devised for studies of vectorially mediated interactions. Glycogen particles were the substrate for the glycolyzing enzymes. Purified soluble (F1) ATPase was added in varying quantities to establish a range of energetic steady states. The data generally confirm our recent conclusions (Wu and Davis, (1981) Arch. Biochem. Biophys. 208, 85-89) on the relative efficacy of the adenine nucleotides and their ratios, and of inorganic phosphate on flux through rate-controlling steps of glycolysis. When mitochondrial ATP synthesis was blocked, glycolytic flux was relatively rapid, and the lactate/pyruvate ratio increased with time to values up to greater than 300. If functional mitochondria were present, glycolytic flux was very strongly suppressed, provided the energy state (ATP/ADP) was high, and the phosphate concentration[Pi] was low. Adenine nucleotide control of glycolysis was to a large extent lost when the steady-state ATP/ADP was below about 10, or if [Pi] was elevated. In the two-phase system containing respiring mitochondria and components of the malate-aspartate shuttle, the ATP/ADP and both extra- and intramitochondrial NAD+/NADH ratios were maintained constant, and to various perturbable levels with varying energy load (ATPase). The gradient in reduction potentials attained values (delta Gredox) of up to about 2.5 kcal. The extramitochondrial redox state was not positively correlated with the external phosphorylation potential ([ATP]/[ADP] X [Pi]). The following conclusions are drawn on the basis of the present data, together with other reports (Davis, Bremer, and Akerman (1980) J. Biol. Chem. 255, 2277-2283) and (Klingenberg and Rottenberg (1977) Eur. J. Biochem. 73, 125-130): (a) the gradient in reduction potential is driven by the membrane potential (delta psi), mediated by the electrogenic glutamate-aspartate exchange, and the poise or set point of this gradient is a function of delta psi; and (b) the gradient of ATP/ADP ratios across the membrane is also driven principally by delta psi, mediated by the electrogenic ATP-ADP exchange. Hence, segregation of phosphorylation and reduction potentials is linked through a mutually shared electrical driving force.  相似文献   

14.
We have observed that preincubation of 48 hour-fasted or alloxan diabetic rat liver slices, with no exogenous energy supply, for 3 hours resulted in an increased rate of incorporation of [1-14C] acetate into fatty acids and cholesterol during the following 2 hours. This preincubation effect was enhanced by the presence of glucose (25mM) in or prevented by the addition of dibutyryl cyclic adenosine 3′,5′ monophosphate (10?4M) to the preincubation medium. Preincubation of normal rat liver slices did not change their rate of incorporation of [1-14C] acetate into fatty acids or cholesterol. The rate of 14CO2 synthesized by normal, fasted or diabetic liver slices was little affected by preincubation. The preincubation effect, i.e. enhanced fatty acid synthesis was also observed in suspensions of hepatocytes from fasted and diabetic rats, preincubated for 2 hours, followed by a 1 hour incubation with either [1-14C] acetate or [3H] H2O as precursor. We conclude from these data that there is concurrent and coordinated short- and long-term regulation of fatty acid biosynthesis in fasted and diabetic rat livers. Further, we suggest that the release of inhibition by preincubation of these tissues provides a useful tool for studying the coordinated control  相似文献   

15.
The diurnal variations in enzyme activities including tyrosine aminotransferase (TAT), ornithine decarboxylase (ODC), ornithine aminotransferase (OAT) and serine dehydratase (SDH) have been studied in rats trained to a 2 hour meal feeding schedule (″2+22″) during metabolic transition from 12.5 to 60% protein diets over a period of 21 days. Although the maximal TAT activity on the first day was slightly lower compared with other days, both TAT and ODC activities adapted rapidly to the increased dietary protein from the first day. The responses of TAT and ODC to the food were so rapid that the maximal value was observed only 4 hrs after the onset of feeding. After each feeding ODC activity decreased rapidly after 4 hours, while TAT activity declined only after 6 hours had elapsed. No clear diurnal rhythm was observed in either OAT or SDH, though OAT activity tended to decrease from the beginning of the dark period and to resume a slow adaptation after about four hours. In contrast to ODC and TAT both OAT and SDH required about 7 days to fully adapt to the high protein diet. The activities of the four enzymes were also compared after 4 groups of rats had been adapted to the ″2+22″ feeding of 12.5, 30 and 60% protein diets and to 60% diet, adlibitum, respectively. The enzyme activities were not directly proportional to the protein content of the diets although higher activity was observed on the high protein diets. The diurnal variations in both TAT and ODC were observed in all ″2+22″ groups although the timing of the peak values were slightly different from each other. The maximal activities of TAT were found at earlier times in 12.5 and 30% protein groups than in the 60% protein group. The peak time for ODC activity was found at a later time in the 12.5% protein group than in rats fed 30% and 60% protein. Adlibitum rats fed 60% protein maintained relatively high levels of TAT activity compared to the rats on the schedule. However, the maximal activity of ODC on the 60% ″2+22″ protein diet adlibitum was so low that a diurnal rhythm was not clearly evident.  相似文献   

16.
17.
The relative rates of ornithine aminotransferase (OAT) synthesis in vivo were studied by pulse-labeling rats with [4,5-3H]leucine, isolating the mitochondrial enzyme protein by immunoprecipitation with a monospecific antibody, dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels, and determining the radioactivity in OAT. After 4 days of treatment with triiodothyronine (T3), both the enzyme activity level and the relative synthetic rate of OAT in rat kidney were elevated over twofold. The level of hepatic OAT activity was unaffected by this treatment. Thyroidectomy caused a 50% drop in the basal level of OAT activity and synthesis in kidney but not in liver. Although the basal levels of activity and synthesis of both renal and hepatic OAT were unaffected by adrenalectomy, the glucagon induction of the enzyme in liver was enhanced by about one-third and the T3 induction in kidney was suppressed 50% by this operation. After 4 days of treatment with estrogen, both the enzyme activity level and the relative synthetic rate of OAT in male rat kidney were elevated nearly 10-fold. Hepatic OAT activity and synthesis were unaffected by this regimen. Thyroidectomy almost completely abolished the estrogen induction of OAT in kidney. OAT induction by estrogen could be restored by treating thyroidectomized rats with T3. Simultaneous administration of T3 plus estrogen to intact rats produced a multiple effect, resulting in a striking 20-fold induction of renal OAT. Although administration of either T3 or estrogen causes an increase in the synthesis of immunoprecipitable OAT protein in rat kidney, each of these hormones may induce OAT by a different mechanism.  相似文献   

18.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

19.
Shell utilization patterns of three sympatric hermit crab species from the Bay of Panama are examined. Shell preferences, as shown by laboratory choice experiments and the selective use of empty shells experimentally added to hermit crab populations, are shown to be important determinants of shell utilization under natural conditions.Factors which influence the types and sizes of shells occupied by hermit crabs in separate populations include: (1) the presence and relative abundance of different gastropod species; (2) the specific shell preferences of different hermit crab species; and (3) the presence and relative abundance of sympatric hermit crab competitors for the limited supply of empty shells. Since the size and type of shell occupied by a hermit crab influences its growth rate and reproductive output, these factors appear to have a direct effect on hermit crab fitness and the demographic structure of separate hermit crab populations.  相似文献   

20.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号