首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Interleukin-1beta regulates CFTR expression in human intestinal T84 cells   总被引:3,自引:0,他引:3  
Cystic fibrosis is an autosomal recessive genetic disease, produced by a mutation in the CFTR gene that impairs its function as a chloride channel. In this work, we have examined the effects of interleukin-1beta (IL-1beta) on the expression of CFTR in human colonic T84 cells. Treatment of T84 cells with IL-1beta (0.25 ng/ml) for 4 h resulted in an increased CFTR expression (mRNA and protein). However, higher doses of IL-1beta (1 ng/ml and over) produced inhibition of CFTR mRNA and protein expression. The protein kinase C (PKC) inhibitors H7 (50 microM) and GF109203X (1 microM) inhibited the stimulatory effect of IL-1beta. Similar effects were seen in the presence of the protein tyrosine kinase (PTK) inhibitors genistein (60 microM) and herbymicin A (2 microM). These results suggest that some PKC isoform(s) and at least a PTK might be involved in the CFTR up-regulation induced by IL-1beta. The repression of CFTR up-regulation by cycloheximide (35.5 microM) suggests the participation of a de novo synthesized protein. Results obtained by using the RNA polymerase II inhibitor DRB (78 microM), suggest that the increased mRNA levels seen after IL-1beta treatment are not due to an increased stability of the message. We conclude that the CFTR mRNA and protein levels are modulated by IL-1beta, this cytokine being the first extracellular protein known to up-regulate CFTR gene expression.  相似文献   

4.
5.
6.
7.
8.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a key membrane protein in the complex network of epithelial ion transporters regulating epithelial permeability. Syntaxins are one of the major determinants in the intracellular trafficking and membrane targeting of secretory proteins. In the present study we demonstrate the biochemical and functional association between CFTR and syntaxin 16 (STX16) that mediates vesicle transport within the early/late endosomes and trans-Golgi network. Immunoprecipitation experiments in rat colon and T84 human colonic epithelial cells indicate that STX16 associates with CFTR. Further analyses using the domain-specific pulldown assay reveal that the helix domain of STX16 directly interacts with the N-terminal region of CFTR. Immunostainings in rat colon and T84 cells show that CFTR and STX16 highly co-localize at the apical and subapical regions of epithelial cells. Interestingly, CFTR-associated chloride current was reduced by the knockdown of STX16 expression in T84 cells. Surface biotinylation and recycling assays indicate that the reduction in CFTR chloride current is due to decreased CFTR expression on the plasma membrane. These results suggest that STX16 mediates recycling of CFTR and constitutes an important component of CFTR trafficking machinery in intestinal epithelial cells.  相似文献   

9.
The unfolded protein response (UPR) is a cellular recovery mechanism activated by endoplasmic reticulum (ER) stress. The UPR is coordinated with the ER-associated degradation (ERAD) to regulate the protein load at the ER. In the present study, we tested how membrane protein biogenesis is regulated through the UPR in epithelia, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a model. Pharmacological methods such as proteasome inhibition and treatment with brefeldin A and tunicamycin were used to induce ER stress and activate the UPR as monitored by increased levels of spliced XBP1 and BiP mRNA. The results indicate that activation of the UPR is followed by a significant decrease in genomic CFTR mRNA levels without significant changes in the mRNA levels of another membrane protein, the transferrin receptor. We also tested whether overexpression of a wild-type CFTR transgene in epithelia expressing endogenous wild-type CFTR activated the UPR. Although CFTR maturation is inefficient in this setting, the UPR was not activated. However, pharmacological induction of ER stress in these cells also led to decreased endogenous CFTR mRNA levels without affecting recombinant CFTR message levels. These results demonstrate that under ER stress conditions, endogenous CFTR biogenesis is regulated by the UPR through alterations in mRNA levels and posttranslationally by ERAD, whereas recombinant CFTR expression is regulated only by ERAD. endoplasmic reticulum-associated degradation; messenger ribonucleic acid  相似文献   

10.
The expression of the HIV-1 Tat protein in HeLa cells resulted in a 2.5-fold decrease in the activity of the antioxidant enzyme glutathione peroxidase (GPX). This decrease seemed not to be due to a disturbance in selenium (Se) uptake. Indeed, the intracellular level of Se was similar in parental and tat-transfected cells. A Se enrichment of the medium did not lead to an identical GPX activity in both cell lines, suggesting a disturbance in Se utilization. Total intracellular 75Se selenoproteins were analyzed. Several quantitative differences were observed between parental and tat-transfected cells. Mainly, cytoplasmic glutathione peroxidase and a 15-kDa selenoprotein were decreased in HeLa-tat cells, while phospholipid hydroperoxide glutathione peroxidase and low-molecular-mass selenocompounds were increased. Thioredoxin reductase activity and total levels of 75Se-labeled proteins were not different between the two cell types. The effect of Tat on GPX mRNA levels was also analyzed. Northern blots revealed a threefold decrease in the GPX/glyceraldehyde phosphate dehydrogenase mRNA ratio in HeLa-tat versus wild type cells. By deregulating the intracellular oxidant/antioxidant balance, the Tat protein amplified UV sensitivity. The LD50 for ultraviolet radiation A was 90 J/cm2 for HeLa cells and only 65 J/cm2 for HeLa-tat cells. The oxidative stress occurring in the Tat-expressing cells and demonstrated by the diminished ratio of reduced glutathione/oxidized glutathione was not correlated with the intracellular metal content. Cellular iron and copper levels were significantly decreased in HeLa-tat cells. All these disturbances, as well as the previously described decrease in Mn superoxide dismutase activity, are part of the viral strategy to modify the redox potential of cells and may have important consequences for patients.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, ΔF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.  相似文献   

12.
The DeltaF508 gene mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to the plasma membrane. The current study examines the biochemical basis for the upregulation of DeltaF508 CFTR expression by sodium butyrate and low temperature. Surface CFTR protein expression was determined by quantitative immunoblot following surface biotinylation and streptavidin extraction. CF gene expression was measured by Northern analysis and CFTR function by forskolin-stimulated (125)I efflux. Butyrate increased DeltaF508 mRNA levels and protein expression but did not increase the biochemical or functional expression of DeltaF508 CFTR at the cell surface. Low temperature increased the biochemical and functional expression of DeltaF508 CFTR at the cell surface but did not increase CFTR mRNA levels. Combining treatments led to a synergistic increase in both DeltaF508 mRNA and surface protein levels that results from the stabilization of CFTR mRNA and protein by low temperature. These findings indicate that surface expression of DeltaF508 CFTR can be markedly enhanced by carefully selected combination agents.  相似文献   

13.
14.
Cells from human neuroectodermal tumors (retinoblastoma and neuroblastoma) and from neuroblastoma cell lines express a gene, N-myc, which is frequently amplified in these tumors. We report here that N-myc mRNA content is markedly decreased in cells of a neuroblastoma cell line (LA-N-5) following differentiation induced with retinoic acid. Exposure of the cells to retinoic acid induced morphologic changes consistent with neuronal differentiation, and led to a 75% decrease in expression of N-myc mRNA. These results suggest that N-myc expression is intimately related to an undifferentiated phenotype in neuroblastoma cells, and support other studies which relate N-myc expression to the malignant phenotype in neuroblastoma tumors.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator gene (CFTR) is regulated in a tissue-specific and developmental fashion. Although it has been known for some time that phorbol esters decrease CFTR expression in cell lines that have high CFTR mRNA levels, the cis-acting elements that control this down-regulation remain ill-defined. The role of cis-acting elements within the CFTR minimal promoter in modulating responses to phorbol 12-myristate 13-acetate (PMA) and forskolin was assessed using luciferase reporter gene (luc)-containing plasmids transfected into Calu-3 and HT-29 cells. PMA treatment had no effect on luciferase activity in Calu-3 cells transiently transfected with plasmids containing luc driven by up to 2.3 kb of CFTR 5'-flanking DNA. PMA increased luciferase activity in transfected HT-29 cells. A more extensive region of DNA was evaluated using a yeast artificial chromosome (YAC) containing luc driven by approximately 335 of CFTR 5'-flanking DNA (y5'luc) stably introduced into HT-29 cells. Clonal cell lines containing y5'luc were created and assessed for luciferase activity at baseline and in response to forskolin and PMA. There was a wide range of baseline luciferase activities among the clones (42-1038 units/microg protein) that was not entirely due to the number of luc copies present within the cells. Treatment with both PMA and forskolin led to increased luciferase activity in six randomly selected clonal cell lines. As expected, endogenous CFTR expression increased in response to forskolin and decreased in response to PMA. These studies demonstrate that luc-containing YAC vectors can be used to study CFTR expression in human cells. In addition, these data suggest that important regulatory elements responsible for decreased CFTR expression in response to PMA are not located upstream of CFTR in the approximately 335 kb 5'-flanking sequence included in this YAC construct.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号