首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

2.
Effect of desipramine on dopamine receptor binding in vivo   总被引:2,自引:0,他引:2  
T Suhara  O Inoue  K Kobayasi 《Life sciences》1990,47(23):2119-2126
Effect of desipramine (given i.p. 30 min prior to the tracer injection) on the in vivo binding of 3H-SCH23390 and 3H-N-methylspiperone (3H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of 3H-SCH23390 or 45 min after injection of 3H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.  相似文献   

3.
The tritiated antagonist SCH23390 was used to identify dopamine D1 receptors in the cerebral cortex and neostriatum. The kinetic properties of binding were investigated in parallel experiments with membrane preparations from both tissues. The densities of receptors (Bmax) and the dissociation constants (KD) were determined from saturation curves, and the specificity of binding verified in competition experiments using agonists and antagonists. The cortical D1 receptor displays the same pharmacological selectivity (including stereospecificity) and kinetic properties as the neostriatal D1 receptor. From both the dissociation kinetics by dilution and the competition curves, it could be established that there is an heterogeneity of binding probably due to high- and low-affinity states. Endogenous dopamine, 4-hydroxy-3-methoxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine contents, as well as D1 receptor distribution, were measured for the neostriatum and four localized cortical areas: anterior cingulate, primary somatosensory, primary visual, and piriform-entorhinal. For the regions examined, the distribution of D1 receptors is heterogeneous, but correlates very well (r greater than 0.98) with the endogenous levels of dopamine and its major metabolites.  相似文献   

4.
To investigate aspects of the biochemical nature of membrane-bound dopamine D1 receptors, rat striatal homogenates were pretreated with heavy metal cations and some other chemical agents, and their effects on D1 receptors were subsequently determined using a standard [3H](R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1-N-3- benzazepine([3H]SCH 23390) binding assay. Incubation of striatal membranes with as little as 1 microM Hg2+, 10 microM Cu2+, and 10 microM Cd2+ completely prevented specific [3H]SCH 23390 binding. The effect of Cu2+, 1.5 microM, was noncompetitive in nature, whereas 3-5 microM Cu2+ afforded mixed-type inhibition. The inhibitory effect of Cu2+ was fully reversed by dithiothreitol (0.1-1 mM). Cu2+ (2 microM) did not affect the affinity of cis-flupenthixol or clozapine for remaining [3H]SCH 23390 sites. A second series of cations, Co2+ (30 microM), Ni2+ (30 microM), Mn2+ (1 mM), Ca2+ (25 mM), and Ba2+ (20 mM), inhibited specific [3H]SCH 23390 binding by 50% at the concentrations indicated. The thiol alkylating reagent N-ethylmaleimide (NEM) (0.2 mM) reduced specific binding by 70%. The effect of NEM was completely prevented by coincubation with a D1 receptor saturating concentration of SCH 23390 (20 nM) or dopamine (10 microM). The results indicated that the dopamine D1 receptor is a thiol protein and that a thiol group is essential for the ligand binding.  相似文献   

5.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

6.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants.  相似文献   

7.
Dopamine D3 receptors may be involved in drug addiction and in disorders such as schizophrenia and Parkinson's disease. To determine the pharmacological properties of dopamine D3 receptors in the rat caudate-putamen, we have investigated R(+)-[3H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin ([3H]R(+)-7-OH-DPAT) binding to membrane preparations from the rat caudate-putamen. Kinetic analyses showed that [3H]R(+)-7-OH-DPAT binding reached equilibrium in approximately 1 h and that both association and dissociation curves were composed of at least two components. Likewise, saturation curves showed at least two binding components with a combined Bmax value of about 600 fmol/mg protein, which is three times higher than what is present in the subcortical limbic area. Competition curves were performed with agonists such as R(-)-propylnorapomorphine, dopamine, PD 128907, quinpirole, and bromocriptine, and antagonists such as haloperidol, raclopride, clozapine, GR 218231x, remoxipride, and U99194A. These experiments revealed that [3H]R(+)-7-OH-DPAT binding could be resolved into three specific binding sites (R1-R3) and one nonspecific binding site, with R1-R2 probably representing D3 receptor binding and the minor R3 representing D2 receptor binding. The low affinities of (+/-)-8-OH-DPAT and 1,3-di(2-tolyl)guanidine to inhibit [3H]R(+)-7-OH-DPAT binding indicate negligible involvement of 5-HT1A or sigma binding sites, respectively. The pharmacological profile of [3H]R(+)-7-OH-DPAT (2 nM) binding in the caudate-putamen was similar to that of dopamine on [125I]iodosulpride binding in the cerebellar lobule X, which contain D3 but not D2 receptors. Mg2+ increased and GTP and Na+ decreased the binding of [3H]R(+)-7-OH-DPAT, suggesting a coupling of endogenous D3 receptors to G proteins. Taken together, these results suggest that dopamine D3 receptors display multiple agonist binding states, and that D3 receptors are present in high concentrations in the rat caudate-putamen. These results may have implications for the physiological and pathological roles of dopamine D3 receptors in the brain.  相似文献   

8.
There is experimental evidence from radioligand binding experiments for the existence of strong antagonistic interactions between different subtypes of adenosine and dopamine receptors in the striatum, mainly between adenosine A1 and dopamine D1 and between adenosine A2A and dopamine D2 receptors. These interactions seem to be more powerful in the ventral compared to the dorsal striatum, which might have some implications for the treatment of schizophrenia. The binding characteristics of different dopamine and adenosine receptor subtypes were analysed in the different striatal compartments (dorsolateral striatum and shell and core of the nucleus accumbens), by performing saturation experiments with the dopamine D1 receptor antagonist [125I]SCH-23982, the dopamine D2-3 receptor antagonist [3H]raclopride, the adenosine A1 receptor antagonist [3H]DPCPX and the adenosine A2A receptor antagonist [3H]SCH 58261. The experiments were also performed in rats with a neonatal bilateral lesion of the ventral hippocampus (VH), a possible animal model of schizophrenia. Both dopamine D2-3 and adenosine A2A receptors follow a similar pattern, with a lower density of receptors (40%) in the shell of the nucleus accumbens compared with the dorsolateral caudate-putamen. A lower density of adenosine A1 receptors (20%) was also found in the shell of the nucleus accumbens compared with the caudate-putamen. On the other hand, dopamine D1 receptors showed a similar density in the different striatal compartments. Therefore, differences in receptor densities cannot explain the stronger interactions between adenosine and dopamine receptors found in the ventral, compared to the dorsal striatum. No statistical differences in the binding characteristics of any of the different adenosine and dopamine receptor antagonists used were found between sham-operated and VH-lesioned rats.  相似文献   

9.
LS‐3‐134 is a substituted N‐phenylpiperazine derivative that has been reported to exhibit: (i) high‐affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100‐fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low‐affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin‐dependent activation of the adenylyl cyclase inhibition assay, LS‐3‐134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]‐labeled LS‐3‐134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10–15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS‐3‐134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [3H]LS‐3‐134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.  相似文献   

10.
This report describes a simple procedure to quantitate receptors for 1,25-dihydroxyvitamin D3 in the presence of contaminating serum vitamin D binding protein. The method ("differential displacement") takes advantage of the greatly different rates of dissociation of 1,25-dihydroxyvitamin D3 from the serum vitamin D binding protein (t 1/2 less than 5 min) and from the receptor (t 1/2 greater than 120 h) at 0 degrees C. The principle of "differential displacement" can be used for other steroid receptors as well, and in combination with a variety of different binding assays, provided they are performed under conditions where the dissociation of the steroid from the receptor is slow.  相似文献   

11.
12.
Rats received continuous administration of cis-flupenthixol (0.8-1.2 mg/kg/day) or trans-flupenthixol (0.9-1.2 mg/kg/day) in drinking water for 14 months. The administration of cis-flupenthixol, but not trans-flupenthixol, caused apparent cerebral dopamine receptor supersensitivity. Thus, animals receiving cis-flupenthixol, but not trans-flupenthixol, showed enhanced apo-morphine-induced stereotyped behaviour. Dopamine concentration in striatum was not altered by drug treatment but striatal HVA and DOPAC concentrations were reduced in animals receiving cis-flupenthixol, but not trans-flupenthixol. No consistent change in Bmax of KD for specific striatal 3H-spiperone binding was observed after 14 months drug intake. However, in cis-flupenthixol treated animals a 40% increase in Bmax was observed following 2 weeks drug withdrawal. Continuous cis-flupenthixol intake increased striatal acetylcholine concentrations; trans-flupenthixol was without effect. This suggests the apparent increase in cerebral dopamine receptor supersensitivity caused by continuous long-term cis-flupenthixol administration is of functional importance in the intact animal.  相似文献   

13.
A series of 2-(5-bromo-2,3-dimethoxyphenyl)-5-(aminomethyl)-1H-pyrrole analogues was prepared and their affinity for dopamine D(2), D(3), and D(4) receptors was measured using in vitro binding assays. The results of receptor binding studies indicated that the incorporation of a pyrrole moiety between the phenyl ring and the basic nitrogen resulted in a significant increase in the selectivity for dopamine D(3) receptors. The most selective compound in this series is 2-(5-bromo-2,3-dimethoxyphenyl)-5-(2-(3-pyridal)piperidinyl)methyl-1H-pyrrole (6p), which has a D(3) receptor affinity of 4.3 nM, a 20-fold selectivity for D(3) versus D(2) receptors, and a 300-fold selectivity for D(3) versus D(4) receptors. This compound is predicted to be a useful ligand for studying the functional role of dopamine D(3) receptors in vivo.  相似文献   

14.
Clones have been isolated from the human astrocytoma cell line G-CCM. Homogenates of clone D384 contain an adenylate cyclase that is stimulated by 3,4-dihydroxyphenylethylamine (dopamine), noradrenaline, and isoprenaline with Ka apparent values of 4, 56, and 2.7 microM, respectively. The Ka apparent value for dopamine was increased by the D-1 antagonist cis-flupenthixol, 25 and 100 nM, to 23 and 190 microM, respectively, but was unaffected by propranolol (1 microM). Noradrenaline stimulation of adenylate cyclase was only partially inhibited by either propranolol (10 microM) or cis-flupenthixol (1 microM). Propranolol (10 microM), but not cis-flupenthixol (1 microM), prevented stimulation by isoprenaline. The stimulation of adenylate cyclase by dopamine and noradrenaline remained unchanged in the presence of phentolamine (1 microM) and sulpiride (1 microM). These results suggest that clone D384 contains both D-1 dopaminergic and beta-adrenergic receptors coupled to adenylate cyclase. Dopamine stimulates D384 adenylate cyclase through D-1 receptors, isoprenaline via beta-receptors, and noradrenaline through both receptors.  相似文献   

15.
The D(3) dopamine receptor is endocytosed through a heterologous mechanism mediated by phorbol esters. Here, we show that following this endocytosis the D(3) dopamine receptors fail to recycle and are instead targeted for degradation through an interaction with the G protein-coupled receptor (GPCR)-associated sorting protein-1 (GASP-1). Furthermore, we identified a specific binding motif in the C terminus common to the D(3) and D(2) that confers GASP-1 binding. shRNA knockdown of GASP-1 delayed post-endocytic degradation of both the D(2) and D(3) dopamine receptors. In addition, mutation of the D(2) and D(3) receptor C termini to resemble the D(4), which does not interact with GASP-1, not only inhibited GASP-1 binding but slowed degradation after endocytosis. Conversely, mutation of the C terminus of the D(4) to resemble that of the D(2) and D(3) facilitated GASP-1 binding and promoted post-endocytic degradation of the mutant D(4) receptor. Thus, we have identified a motif that is both necessary and sufficient to promote GASP-1 binding and receptor degradation. In addition, these data demonstrated that GASP-1 can mediate post-endocytic degradation of dopamine receptors that have been endocytosed not only as a consequence of dopamine activation but also as a consequence of activation by phorbol esters.  相似文献   

16.
Although dopamine-containing cells are known to be present in sympathetic ganglia, the site of action and the role of dopamine in ganglion function remain obscure. In the present work, we evaluated the interaction of dopamine receptor ligands with particulate membrane fractions from bovine chromaffin cells and adrenal medullary homogenates using the D2 dopamine receptor radioligand [3H]N-methylspiperone ([3H]NMSP). Scatchard analysis of [3H]NMSP saturation experiments revealed a Bmax of 24.1 +/- 1.6 fmol/mg of protein and a KD of 0.23 +/- 0.03 nM in the particulate fraction from adrenal medulla homogenates and a Bmax of 26.5 +/- 2.7 fmol/mg of membrane protein and a KD of 0.25 +/- 0.02 nM in the particulate fraction prepared from isolated adrenal chromaffin cells. There were approximately 1,000 receptors/cell. There were no detectable levels of specific [3H]NMSP binding in the particulates prepared from adrenal cortical or capsular homogenates. Competition studies with the nonradioactive D2 receptor antagonists spiperone, chlorpromazine, and (-)-sulpiride revealed KI values of 0.28, 21, and 196 nM, respectively. The (+) isomer of butaclamol displayed a 604-fold higher affinity than the (-) isomer. Competition studies with the dopamine receptor agonists dopamine and apomorphine revealed affinities of 3,960 and 417 nM, respectively. A correlation coefficient of 0.96 was obtained in studies comparing the potencies of drugs in inhibiting specific [3H]NMSP binding in bovine adrenal medullary homogenates and in inhibiting specific [3H]NMSP binding to brain D2 dopamine receptors. In summary, radiolabeling studies using [3H]NMSP have revealed the presence of D2 dopamine receptors on bovine adrenal chromaffin cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Methylation of 2-125I-lysergic acid diethylamide (125I-LSD) at the N1 position produces a new derivative, N1-methyl-2-125I-lysergic acid diethylamide (125I-MIL), with improved selectivity and higher affinity for serotonin 5-HT2 receptors. In rat frontal cortex homogenates, specific binding of 125I-MIL represents 80-90% of total binding, and the apparent dissociation constant (KD) for serotonin 5-HT2 receptors is 0.14 nM (using 2 mg of tissue/ml). 125I-MIL also displays a high affinity for serotonin 5-HT1C receptors, with an apparent dissociation constant of 0.41 nM at this site. 125I-MIL exhibits at least 60-fold higher affinity for serotonin 5-HT2 receptors than for other classes of neurotransmitter receptors, with the dopamine D2 receptor as its most potent secondary binding site. Studies of the association and dissociation kinetics of 125I-MIL reveal a strong temperature dependence, with very slow association and dissociation rates at 0 degree C. Autoradiographic experiments confirm the improved specificity of 125I-MIL. Selective labeling of serotonin receptors was observed in all brain areas examined. In vivo binding studies in mice indicate that 125I-MIL is the best serotonin receptor label yet described, with the highest frontal cortex to cerebellum ratio of any serotonergic radioligand. 125I-MIL is a promising ligand for both in vitro and in vivo labeling of serotonin receptors in the mammalian brain.  相似文献   

18.
Abstract: Cations of various size and charge were used as atomic scale probes of D1 and D2 dopamine receptors. Those cations that perturbed the binding of D1- and D2-selective dopamine receptor antagonists were identified by screening at 5 m M cation. Pseudo-noble-gas-configuration d-transition metals, such as zinc, exerted a complete inhibition of specific binding, whereas most other cations had little or no effect. The nature of zinc's actions was characterized by measuring the radioligand binding properties of [3H]SCH-23390 and [3H]methylspiperone to cloned D1A and D2L dopamine receptors in either the presence or absence of Zn2+. Zinc exerts a low-affinity, dose-dependent, EDTA-reversible inhibition of the binding of subtype-specific antagonists primarily by decreasing the ligands' affinity for their receptors. The mechanism of zinc inhibition appears to be allosteric modulation of the dopamine receptor proteins because zinc increases the dissociation constant ( K D) of ligand binding, Schild-type plots of zinc inhibition reach a plateau, and zinc accelerates antagonist dissociation rates. Here we demonstrate the effect of zinc on the binding of D1- and D2-selective antagonists to cloned dopamine receptors and show that the inhibition by zinc is through a dose-dependent, reversible, allosteric, two-state modulation of dopamine receptors.  相似文献   

19.
The effect of tyrosine-alkylating agents on the ligand-binding properties of bovine striatal dopamine D1 and D2 receptors was investigated. The tyrosine-alkylating agents, p-nitrobenzenesulphonylfluoride (pNBSF) and tetranitromethane (TNM) caused a time-and dose-dependent loss of the binding of [3H]SCH-23390 and [3H]spiroperidol, ligands specific for dopamine D1 and D2 receptors, respectively. The two dopamine receptors, however, showed a differential sensitivity to inactivation by these agents. The mechanism of inhibition of the two receptors appears to be complex as treatment of membranes with pNBSF and TNM resulted in a decrease of both the Kd and the Bmax of ligand binding. Spiroperidol almost completely protected the TNM-induced inhibition of [3H]spiroperidol binding to dopamine D2 receptors whereas SCH-23390 afforded only partial protection of the [3H]SCH-23390 binding by TNM suggesting that more than one tyrosine groups may be involved in the D1 receptor binding activity.  相似文献   

20.
Induction of oral dyskinesias in naive rats by D1 stimulation   总被引:5,自引:0,他引:5  
Repetitious opening and closing of the mouth and high frequency clonic jaw movements were observed in rats challenged with dopamine agonists after acute treatment with sulpiride or a low dose of spiroperidol. SKF 38393, a specific D1 receptor agonist, alone, also induced these behaviors and cis-flupenthixol blocked them, evidence suggesting D1 dopamine receptor mediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号