首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The plasticity of nerve cells expressing the neuropeptide FMRFamide was examined in adult hydra. Using a whole-mount technique with indirect immunofluorescence, the spatial pattern of neurons showing FMRFamide-like immunoreactivity (FLI) was visualized. These neurons were located in the tentacles, hypostome, and peduncle, but not in the body column or basal disc. Since every neuron in the nerve net is continuously displaced toward an extremity and eventually sloughed, the constant pattern of FLI+ neurons could arise in one of two ways. When displaced into the appropriate region, FLI- neurons are converted to FLI+ neurons, or FLI+ neurons arise by differentiation from interstitial cells. To distinguish between these two possibilities, interstitial cells, the multipotent precursors of the nerve cells, were eliminated by treatment with hydroxyurea or nitrogen mustard. Following head, or foot and peduncle, removal from these animals, the missing structures regenerated. The spatial pattern of FLI+ neurons reappeared in the newly regenerated head or peduncle. This shows FLI- neurons in the body column were converted to FLI+ when their position was changed to the head or the peduncle. When the peduncle was grafted into the body column, it was converted to basal disc or body column tissue, and FLI disappeared. The appearance and loss of FLI was always position dependent. These results indicate that the neurons in the mature nerve net can change their neuropeptide phenotype in response to changes in their position.  相似文献   

2.
Neurotensin-like immunoreactivity in the nervous system of hydra   总被引:3,自引:0,他引:3  
Summary Neurotensin-like immunoreactivity is found in nerve fibers present in all body regions of hydra. The nerve fibers are especially numerous in the ectoderm at the bases of the tentacles and in the ectoderm at a site just above the foot. Radioimmunoassays of acetic-acid extracts of hydra, using various region-specific antisera towards mammalian neurotensin, show the presence of multiple neurotensin-related peptides. The amounts of these peptides vary between 1 and 350 pmol per gram wet weight. Gel filtration on Sephadex G-25 reveals a fraction of neurotensin-like peptides that crossreacts equally well with an antiserum directed against sequence 1–8 and an antiserum directed against sequence 6–13 of neurotensin. This fraction elutes also at the position of neurotensin and might closely resemble the mammalian peptide. A fraction eluting with the void volume crossreacts preferentially with antisera directed against sequences 1–8 and 10–13 of neurotensin. Several components of apparent lower molecular weight than neurotensin crossreact preferentially with an antiserum against sequence 10–13. These last peptides represent the major portion of the neurotensin-like peptides in hydra.  相似文献   

3.
Bombesin-like immunoreactivity in the nervous system of hydra   总被引:2,自引:0,他引:2  
Summary With immunocytochemical methods, nerve cells have been detected in Hydra attenuata containing bombesin-like immunoreactivity. These nerve cells are located in the ectoderm of all body regions of the animal and are especially abundant in basal disk and tentacles. Radioimmunoassay of extracts of hydra demonstrated at least 0.2 pmol/g wet weight of bombesinlike immunoreactivity. The immunoreactive material elutes from Sephadex G-50 in a similar position to synthetic bombesin. The data show that bombesin-like peptides are among the phylogenetically oldest neuropeptides found so far.  相似文献   

4.
Summary Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

5.
Substance P-like immunoreactivity in the nervous system of hydra   总被引:3,自引:0,他引:3  
Using immunocytochemistry we find substance P-like material in nerve cells of hydra. These nerve cells are situated in the ectoderm of the basal disk and tentacles. Radioimmunoassay of hydra extracts gives dilution curves parallel to that of synthetic substance P, from which it can be calculated that one animal contains at least 0.6 fmol substance P-like immunoreactivity. After chromatography on Biogel P-100, the substance P-like immunoreactivity elutes as a peak in the void volume and a peak at the position of synthetic substance P.  相似文献   

6.
7.
Summary The distribution of FMRFamide-like immunoreactive neurons in the nervous system of the slug Limax maximus was studied using immunohistochemical methods. Approximately one thousand FMRFamide-like immunoreactive cell bodies were found in the central nervous system. Ranging between 15 m and 200 m in diameter, they were found in all 11 ganglia of the central nervous system. FMRFamide-like immunoreactive cell bodies were also found at peripheral locations on buccal nerve roots. FMRFamide-like immunoreactive nerve fibres were present in peripheral nerve roots and were distributed extensively throughout the neuropil and cell body regions of the central ganglia. They were also present in the connective tissue of the perineurium, forming an extensive network of varicose fibres. The large number, extensive distribution and great range in size of FMRFamide-like immunoreactive cell bodies and the wide distribution of immunoreactive fibres suggest that FMRFamide-like peptides might serve several different functions in the nervous system of the slug.  相似文献   

8.
1. Distribution of FMRFamide-like peptide activity was examined in the stomatogastric nervous system of the adult fly, Sarcophaga bullata by the indirect immunofluorescent method.2. The neurons of the hypocerebral ganglion exhibit intense immunoreactivity and extend a thick axon bundle ventrally towards the proventriculus and crop.3. Near the mouth of the stomodeal valve a dense network of radial and circular immunoreactive processes branch off and innervate the proventriculus.4. Beyond the proventriculus, the crop duct and anterior midgut wall are also innervated by the FMRFamide-like immunoreactive processes of the nerve from the hypocerebral ganglion.5. From the pattern of innervation of the gut by FMRFamide-like immunoreactive processes it is suggested that this neuropeptide may regulate feeding activities in the adult fly.  相似文献   

9.
Summary The distributions of small cardioactive peptide (SCP)- and FMRFamide-like immunoreactivities in the central nervous system of the medicinal leech Hirudo medicinalis were studied. A subset of neurons in the segmental ganglia and brains was immunoreactive to an antibody directed against SCPB. Immunoreactive cell bodies were regionally distributed throughout the nerve cord, and occurred both as bilaterally paired and unpaired neurons. The majority of the unpaired cells displayed a tendency to alternate from side to side in adjacent ganglia. A small number of neurons were immunoreactive only in a minority of nerve cords investigated. Intracellular injections of Lucifer yellow dye and subsequent processing for immunocytochemistry revealed SCP-like immunoreactivity in heart modulatory neurons but not in heart motor neurons. FMRFamide-like immunoreactivity was also detected in cell bodies throughout the central nervous system. A subset of neurons contained both SCP- and FMRFamide-like immunoreactivities; others stained for only one or the other antigen. These data suggest that an antigen distinct from FMRFamide is responsible for at least part of the SCP-like immunoreactivity. This antigen likely bears some homology to the carboxyl terminal of SCPA and SCPB.  相似文献   

10.
S T Chen  M S Tsai  C L Shen 《Peptides》1989,10(4):825-834
The distribution of FMRFamide-like immunoreactivity in the central nervous system of the Formosan monkey (Macaca cyclopsis) was investigated employing immunohistochemical techniques. FMRFamide-containing cells were found to be widely distributed throughout the forebrain. Principal densities of FMRFamide neuronal perikarya were observed in the following areas: the amygdaloid complex, the olfactory tubercle, the cerebral cortex, the basal ganglia, the septum, the caudate-putamen and the arcuate nucleus. A large number of immunoreactive fibers were observed in areas ranging from the cerebral cortex to the spinal cord, and were noted in the following locations: the preoptic area, the tuberal and posterior hypothalamic areas, the bed nucleus of the stria terminalis, the nuclei of the spinal trigeminal nerve, the hypoglossal nucleus, the nucleus of the solitary tract, and the dorsal horn of the spinal cord. The results generally parallel those described in the rat and guinea pig.  相似文献   

11.
A polyclonal antiserum raised against the molluscan neuromodulatory peptide Phe-Met-Arg-Phe-amide (FMRFamide) reacts with nervous tissue in the free-living nematodes Panagrellus redivius and Caenorhabditis elegans and in infective juveniles (J2) of the soybean cyst nematode Heterodera glycines . Sectioning of the nematodes was unnecessary but penetration of the antibody was improved by cutting the animals or by use of plasma etching to breach the cuticle before incubation in antiserum. Both procedures required subsequent exposure to detergents or partial digestion with protease K for optimum immunoreactivity. A positive reaction was observed for all three nematodes in the longitudinal nerve cords, nerve ring and ventral and lateral ganglia. Neurones were also visualized in association with the vulva in the free-living species and the spicules of male P. redivius . In H. glycines , neurones innervating the pharynx reacted positively, as did two loops of neural tissue on either side of the ventral nerve cord slightly anterior to the anus. Immunoreactivity was also noted in the amphidial pouches of H. glycines after prolonged (15 min) protease treatment. Further work is needed to establish the structure of the peptide antigen localized in these nematodes.  相似文献   

12.
Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated alphatubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species. In addition, the distribution of serotonin (5-HT) and FMRFamide-like immunoreactivity was compared in the spionid polychaetes Dipolydora quadrilobata and Pygospio elegans. The distribution of serotonin immunoreactivity was also examined in the palps of Polydora cornuta and Streblospio benedicti. Serotonin immunoreactivity was concentrated in cells underlying the food groove of the palps, in the palp nerves, and in the cerebral ganglion. FMRFamide-like immunoreactivity was associated with the cerebral ganglia, nuchal organs and palp nerves, and also with the perikarya of ciliated sensory cells on the palps.  相似文献   

13.
14.
15.
Koizumi  Osamu  Sato  Nobuko  Goto  Chieko 《Hydrobiologia》2004,530(1-3):41-47
Polyclonal antibodies against hydra neuropeptides allow us to visualize the hydra nerve net. Chemical anatomy of the hydra nerve net was archived by means of immunocytochemistry with various antibodies to hydra neuropeptides. Our goal is to describe the hydra nerve net both qualitatively and quantitatively. The present chemical anatomy results indicate (1) differences in peptide expression between ganglion cells and sensory cells, (2) large differences in neuropeptide expression between ectodermal nerve cells and endodermal nerve cells, and (3) the usefulness of quantitative chemical anatomy to analyze the entire nervous system of hydra.  相似文献   

16.
Molluscan cardioexcitatory neuropeptide or FMRFamide is present in the invertebrate central nervous system (CNS) and FMRFamide like peptide has been demonstrated in the mammalian CNS. In this study, the distribution of FMRFamide immunoreactivity was studied in rat brain using the indirect immunofluorescent method. The highest number of FMRFamide staining cell bodies was found in the nucleus (n) arcuatus. N. paraventricularis, n. hypothalamus, n. ventromedialis, n. dorsomedialis and n. tractus solitarii also contained high numbers. FMRFamide positive nerve fibers and terminals were widely distributed. The septal complex contained high densities, especially in n. interstitialis striae terminalis. N. paraventricularis hypothalami, n. paraventricularis, n. hypothalamicus, n. ventromedialis and n. dorsomedialis showed a high to very high degree of immunoreactivity. In myelencephalon, n. tractus solitarii had the densest innervation. Spinal cord had a dense band of FMRFamide positive fibers in lamina I and II of the dorsal horn. The present findings support a neurotransmitter role for a FMRFamide like peptide in the mammalian brain, possibly related to endocrine and autonomic regulation as well as pain modulation.  相似文献   

17.
Cnidarians represent the first animal phylum with an organized nervous system and a complex active behavior. The hydra nervous system is formed of sensory-motoneurons, ganglia neurons and mechanoreceptor cells named nematocytes, which all differentiate from a common stem cell. The neurons are organized as a nerve net and a subset of neurons participate in a more complex structure, the nerve ring that was identified in most cnidarian species at the base of the tentacles. In order to better understand the genetic control of this neuronal network, we analysed the expression of evolutionarily conserved regulatory genes in the hydra nervous system. The Prd-class homeogene prdl-b and the nuclear orphan receptor hyCOUP-TF are expressed at strong levels in proliferating nematoblasts, a lineage where they were found repressed during patterning and morphogenesis, and at low levels in distinct subsets of neurons. Interestingly, Prd-class homeobox and COUP-TF genes are also expressed during neurogenesis in bilaterians, suggesting that mechanoreceptor and neuronal cells derive from a common ancestral cell. Moreover, the Prd-class homeobox gene prdl-a, the Antp-class homeobox gene msh, and the thrombospondin-related gene TSP1, which are expressed in distinct subset of neurons in the adult polyp, are also expressed during early budding and/or head regeneration. These data strengthen the fact that two distinct regulations, one for neurogenesis and another for patterning, already apply to these regulatory genes, a feature also identified in bilaterian related genes.  相似文献   

18.
Summary Using a monoclonal antibody for glutamate the distribution was determined of glutamate-like immunoreactive neurons in the leech central nervous system (CNS). Glutamate-like immunoreactive neurons (GINs) were found to be localized to the anterior portion of the leech CNS: in the first segmental ganglion and in the subesophageal ganglion. Exactly five pairs of GINs consistently reacted with the glutamate antibody. Two medial pairs of GINs were located in the subesophageal ganglion and shared several morphological characteristics with two medial pairs of GINs in the first segmental ganglion. An additional lateral pair of GINs was also located in segmental ganglion 1. A pair of glutamate-like immunoreactive neurons, which are potential homologs of the lateral pair of GINs in segmental ganglion 1, were occasionally observed in more posterior segmental ganglia along with a selective group of neuronal processes. Thus only a small, localized population of neurons in the leech CNS appears to use glutamate as their neurotransmitter.  相似文献   

19.
Neurocalcin-like immunoreactivity in the rat esophageal nervous system   总被引:1,自引:0,他引:1  
Neurocalcin is a newly identified neuronal calcium-binding protein. We tried here to investigate the immunohistochemical distribution of neurocalcin in the rat esophagus. Nerve cell bodies having neurocalcin immunoreactivity were found throughout the myenteric plexus. In the myenteric ganglia, two types of nerve terminals showed neurocalcin immunoreactivity. One was varicose terminals containing numerous small clear vesicles and forming a synapse with nerve cells. The other terminals were characterized by laminar or pleomorphic structure and many mitochondria. These laminar terminals were supposed to be sensory receptors of the esophageal wall. In the motor endplates of the striated muscles, nerve terminals containing many small clear vesicles and mitochondria also had neurocalcin immunoreactivity. After left vagus nerve cutting under the nodose ganglia, the number of immunopositive thick nerve fibers, laminar endings and nerve terminals on the striated muscles decreased markedly. Retrograde tracing experiments using Fast Blue showed extrinsic innervation of esophagus from ambiguus nucleus, dorsal motor nucleus of vagus, superior cervical ganglia, celiac ganglia, nodose ganglia and dorsal root ganglia. In the celiac ganglia, nodose ganglia and dorsal root ganglia, retrogradely labeled nerve cells were neurocalcin-immunoreactive. Neurons in the celiac ganglia may project varicose terminals, while nodose and dorsal root neurons project laminar terminals. Although cell bodies of motoneurons in the ambiguus nucleus lacked neurocalcin immunoreactivity, these neurons may contain neurocalcin only in the nerve terminals in the motor endplates. Neurocalcin immunoreactivity is distributed in many extrinsic and intrinsic neurons in the esophagus and this protein may play important roles in regulating calcium signaling in the neurons.  相似文献   

20.
Summary The distribution of FMRFamide-like immunoreactive (FLI) neurons and their morphological characteristics have been investigated in the central nervous system of the snail, Helix pomatia L. Approximately phageal ganglion complex. More than 50% of the FLI neurons were located in the cerebral ganglia. The FLI neurons could be divided into four groups according to size: (i) giant neurons (over 100 m); (ii) large neurons (80–100 m); (iii) medium-sized neurons (40–70 m); (iv) small neurons (12–30 m). They were distributed i) in groups or clusters, typical of small neurons and ii) in solitary form or in groups comprising 2–3 cells, typical of large and giant neurons. Giant and large neurons revealed only limited arborizations in the neuropil, but rich branching towards and in the peripheral nerves. Some of the small neurons had extensive arborizations of varicose fibers in the neuropil. They may therefore play some role in integratory processes. Varicose FLI fibers were visualized in the cell body layer of the different ganglia, and in the neural sheath of both the ganglia and the peripheral nerves. We propose a multifunctional involvement of FLI neurons and FMRFamide-like neuropeptides in the Helix nervous system: (i) a synaptic or modulatory role in axo-axonic interactions in the neuropil; (ii) a direct influence on neuronal cell bodies in the cortical layer, (iii) innervation of different peripheral organs; and (iv) remote neurohormonal control of peripheral events through the neural sheath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号