首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group B Streptococcus (GBS) is the foremost cause of neonatal sepsis and meningitis in the United States. A major virulence factor for GBS is its capsular polysaccharide, a high molecular weight polymer of branched oligosaccharide subunits. N -acetylneuraminic acid (Neu5Ac or sialic acid), at the end of the polysaccharide side chains, is critical to the virulence function of the capsular polysaccharide. Neu5Ac must be activated by CMP-Neu5Ac synthetase before it is incorporated into the polymer. We showed previously that a transposon mutant of a serotype III GBS strain which had no detectable capsular Neu5Ac was deficient in CMP-Neu5Ac-synthetase activity (Wessels et al ., 1992). In this paper, we report the identification and characterization of cpsF , a gene interrupted by transposon insertion in the previously described Neu5Ac-deficient mutant. The predicted amino acid sequence of the cpsF gene product shares 57% similarity and 37% identity with CMP-Neu5Ac synthetase encoded by the Escherichia coli K1 gene, neuA . The enzymatic function of the protein encoded by cpsF was established by cloning the gene in E. coli under the control of the T7 polymerase/promoter. Lysates of E. coli in which the cpsF gene product was expressed, catalysed the condensation of CTP with Neu5Ac to form CMP-Neu5Ac. In addition, when a CMP-Neu5Ac synthetase-deficient mutant of E. coli K1 was transformed with cpsF , K1 antigen expression was restored. We conclude that cpsF encodes CMP-Neu5Ac synthetase in type III GBS, and that the GBS enzyme can function in the capsule-synthesis of a heterologous bacterial species.  相似文献   

2.
Several bacteria causing meningitis, such as Escherichia coli K1, Streptococcus suis, Neisseria meningitidis, and group B Streptococci (GBS), produce sialic acid (Neu5Ac)-containing capsular polysaccharide (CPS). Biosynthesis of the Neu5Ac-containing CPS requires CMP-Neu5Ac as substrate, which is synthesized by CMP-Neu5Ac synthetase from CTP and Neu5Ac. In E. coli or GBS, the NeuA protein encoded by the neuA gene has been known encoding a bifunctional enzyme that possesses both CMP-Neu5Ac synthetase and O-acetylesterase activity. In this report, we found that the S. suis NeuA (SsNeuA) was also a bifunctional CMP-Neu5Ac synthetase/O-acetylesterase. Biochemical analyses revealed that the SsNeuA strictly de-O-acetylated CMP-O-acetyl-Neu5Ac, whereas the E. coli NeuA (EcNeuA) preferentially de-O-acetylated CMP-O-acetyl-Neu5Ac. E. coli devoid of NeuA O-acetylesterase activity was unable to produce capsule and only CMP-Neu5Ac synthetase activity of the EcNeuA or SsNeuA could not restore its ability to produce capsule. These results suggest that the O-acetylesterase is essential for the synthesis of capsular Neu5Ac in E. coli, probably in S. suis and GBS as well. Our findings are key to understanding the biosynthesis of capsular Neu5Ac in E. coli, S. suis and GBS.  相似文献   

3.
The capsular polysaccharide of Pasteurella haemolytica A2 consists of a linear polymer of N-acetylneuraminic acid (Neu5Ac) with (2–8) linkages. When the bacterium was grown at 37°C for 90 h in 250 ml shake flasks at 200 rpm in Brain heart infusion broth (BHIB), it accumulated, attaining a level of 60 g/ml. Release of this polymer was strictly regulated by the growth temperature, and above 40° no production was detected. The pathway for the biosynthesis of this sialic acid capsular polymer was also examined in P. haemolytica A2 and was seen to involve the sequential presence of three enzymatic activities: Neu5Ac lyase activity, which synthesizes Neu5Ac by condensation of N-acetyl-D-mannosamine and pyruvate with apparent Km values of 91 mM and 73 mM, respectively; a CMP-Neu5Ac synthetase, which catalyzes the production of CMP-Neu5Ac from Neu5Ac and CTP with apparent Km values of 2 mM and 0.5 mM, respectively, and finally a membrane-associated polysialyltransferase, which catalyzes the incorporation of sialic acid from CMP-Neu5Ac into polymeric products with an apparent CMP-Neu5Ac Km of 250 M.  相似文献   

4.
The capsular polysaccharide of Escherichia coli K92 consists of a linear polymer of Neu5Ac with alternating alpha(2-8) and alpha(2-9) linkages. It accumulates when the bacterium is grown at 37 degrees C in a defined medium containing D-xylose and L-asparagine as carbon and nitrogen sources. Release of the capsular polymer into the medium was maximal (450 micrograms x ml-1) in the stationary phase of growth (76 h). This medium could be useful for obtaining sufficient polymer to develop effective vaccines. The enzyme, CMP-Neu5Ac synthetase, was not detected in cells grown at 20 degrees C. The lack of this enzyme explains the absence of polymer biosynthesis when the bacterium was grown at 20 degrees C.  相似文献   

5.
The capsular polysaccharide of Pasteurella haemolytica A2 consists of a linear polymer of N-acetylneuraminic acid (Neu5Ac) with alpha(2-8) linkages. The production of this polymer is strictly regulated by the growth temperature and above 40 degrees C no production is detected. Analysis of the enzymatic activities directly involved in its biosynthesis reveals that Neu5Ac lyase, CMP-Neu5Ac synthetase and polysialyltransferase are involved in this regulation. Very low activities were found in P. haemolytica grown at 43 degrees C (at least 25 times lower than those observed when the growth temperature was 37 degrees C). The synthesis of these enzymes increased rapidly when bacteria grown at 43 degrees C were transferred to 37 degrees C and decreased dramatically when cells grown at 37 degrees C were transferred to 43 degrees C. These findings indicate that the cellular growth temperature regulates the synthesis of these enzymes and hence the concentration of the intermediates necessary for capsular polysaccharide genesis in P. haemolytica A2.  相似文献   

6.
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.  相似文献   

7.
A cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase was found in a crude extract prepared from Photobacterium leiognathi JT-SHIZ-145, a marine bacterium that also produces a β-galactoside α2,6-sialyltransferase. The CMP-Neu5Ac synthetase was purified from the crude extract of the cells by a combination of anion-exchange and gel filtration column chromatography. The purified enzyme migrated as a single band (60 kDa) on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The activity of the enzyme was maximal at 35 °C at pH 9.0, and the synthetase required Mg(2+) for activity. Although these properties are similar to those of other CMP-Neu5Ac synthetases isolated from bacteria, this synthetase produced not only CMP-Neu5Ac from cytidine triphosphate and Neu5Ac, but also CMP-N-glycolylneuraminic acid from cytidine triphosphate and N-glycolylneuraminic acid, unlike CMP-Neu5Ac synthetase purified from Escherichia coli.  相似文献   

8.
5-N-Acetylneuraminic acid (Neu5Ac) is the major sialic acid derivative found in animal cells. As a component of cell surface glycoconjugates, Neu5Ac is pivotal to numerous cellular recognition and communication processes including host-parasite interactions. A prerequisite for the synthesis of sialylated glycoconjugates is the activation of Neu5Ac to cytidine-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). The reaction is catalyzed by CMP-Neu5Ac-synthetase (syn), which, for unknown reasons, resides in the nucleus. Sequence analysis of the cloned murine CMP-Neu5Ac synthetase identified three clusters of basic amino acids (BC1-BC3) that might function as nuclear localization signals (NLS). In the present study chimeric protein and mutagenesis strategies were used to show that BC1 and BC2 are active NLS sequences when attached to the green fluorescent protein (enhanced GFP), but only BC2 is necessary and sufficient to mediate the nuclear import of CMP-Neu5Ac synthetase. Site-directed mutations identified the residues K(198)RXR to be essential for nuclear transport and Arg(202) to be necessary to complete the transport process. Cytoplasmic forms of CMP-Neu5Ac synthetase generated by single site mutations in BC2 demonstrated that (i) enzyme activity is independent of nuclear localization, and (ii) Arg(199) and Arg(202) are involved in both nuclear transport and synthetase activity. Comparison of all known and predicted CMP-sialic acid synthetases reveals Arg(202) and Gln(203) as highly conserved in evolution and critically important for optimal synthetase activity but not for nuclear localization. Combined, the data demonstrate that nuclear transport and enzyme activity are independent functions that share some common amino acid requirements in CMP-Neu5Ac synthetase.  相似文献   

9.
Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.  相似文献   

10.
N-Glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans and is developmentally regulated in rodents. We have explored the biology of N-acetylneuraminic acid hydroxylase, the enzyme responsible for conversion of the parent sialic acid, N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. We show that the major sialic acid in all compartments of murine myeloma cell lines is Neu5Gc. Pulse-chase analysis in these cells with the sialic acid precursor [6-3H]N-acetylmannosamine demonstrates that most of the newly synthesized Neu5Gc appears initially in the cytosolic low-molecular weight pool bound to CMP. The percentage of Neu5Gc on membrane-bound sialic acids closely parallels that in the CMP-bound pool at various times of chase, whereas that in the free sialic acid pool is very low initially, and rises only later during the chase. This implies that conversion from Neu5Ac to Neu5Gc occurs primarily while Neu5Ac is in its sugar nucleotide form. In support of this, the hydroxylase enzyme from a variety of tissues and cells converted CMP-Neu5Ac to CMP-Neu5Gc, but showed no activity towards free or alpha-glycosidically bound Neu5Ac. Furthermore, the majority of the enzyme activity is found in the cytosol. Studies with isolated intact Golgi vesicles indicate that CMP-Neu5Gc can be transported and utilized for transfer of Neu5Gc to glycoconjugates. The general properties of the enzyme have also been investigated. The Km for CMP-Neu5Ac is in the range of 0.6-2.5 microM. No activity can be detected against the beta-methylglycoside of Neu5Ac. On the other hand, inhibition studies suggest that the enzyme recognizes both the 5'-phosphate group and the pyrimidine base of the substrate. Taken together, the data allow us to propose pathways for the biosynthesis and reutilization of Neu5Gc, with initial conversion from Neu5Ac occurring primarily at the level of the sugar nucleotide. Subsequent release and reutilization of Neu5Gc could then account for the higher steady-state level of Neu5Gc found in all of the sialic acid pools of the cell.  相似文献   

11.
The finding that N-glycoloylneuraminic acid (Neu5Gc) in pig submandibular gland is synthesized by hydroxylation of the sugar nucleotide CMP-Neu5Ac [Shaw & Schauer (1988) Biol. Chem. Hoppe-Seyler 369, 477-486] prompted us to investigate further the biosynthesis of this sialic acid in mouse liver. Free [14C]Neu5Ac, CMP-[14C]Neu5Ac and [14C]Neu5Ac glycosidically bound by Gal alpha 2-3- and Gal alpha 2-6-GlcNAc beta 1-4 linkages to fetuin were employed as potential substrates in experiments with fractionated mouse liver homogenates. The only substrate to be hydroxylated was the CMP-Neu5Ac glycoside. The product of the reaction was identified by chemical and enzymic methods as CMP-Neu5Gc. All of the CMP-Neu5Ac hydroxylase activity was detected in the high-speed supernatant fraction. The hydroxylase required a reduced nicotinamide nucleotide [NAD(P)H] coenzyme and molecular oxygen for activity. Furthermore, the activity of this enzyme was enhanced by exogenously added Fe2+ or Fe3+ ions, all other metal salts tested having a negligible or inhibitory influence. This hydroxylase is therefore tentatively classified as a monooxygenase. The cofactor requirement and CMP-Neu5Ac substrate specificity are identical to those of the enzyme in high-speed supernatants of pig submandibular gland, suggesting that this is a common route of Neu5Gc biosynthesis. The relevance of these results to the regulation of Neu5Gc expression in sialoglycoconjugates is discussed.  相似文献   

12.
The relative contribution of N-glycoloyl-beta-D-neuraminic acid (Neu5Gc) to total sialic acids expressed in mouse and rat liver glycoconjugates was found to be 95% and 11%, respectively. This considerable difference in sialic acid composition made these two tissues suitable models for a comparative investigation into the regulation of Neu5Gc biosynthesis and utilization. An examination of the CMP-glycoside specificity of Golgi-associated sialyltransferases using CMP-N-acetyl-beta-D-neuraminic acid (CMP-Neu5Ac) and CMP-Neu5Gc revealed no significant tissue-dependent differences. The Golgi membrane CMP-sialic acid transport system from rat liver did, however, exhibit a slightly higher internalisation rate for CMP-Neu5Ac, though no preferential affinity for this sugar nucleotide over CMP-Neu5Gc was observed. In experiments, where Golgi membrane preparations were incubated with an equimolar mixture of labelled CMP-Neu5Ac and CMP-Neu5Gc, no significant tissue-dependent differences in [14C]sialic acid composition were observed, either in the luminal soluble sialic acid fraction or in the precipitable sialic acid fraction, results which are consistent with the above observations. From this experiment, evidence was also obtained for the presence of a Golgi-lumen-associated CMP--sialic acid hydrolase which exhibited no apparent specificity for either CMP-Neu5Ac or CMP-Neu5Gc. The specific activity of the CMP-Neu5Ac hydroxylase, the enzyme responsible for the biosynthesis of Neu5Gc, was found to be 28-fold greater in high-speed supernatants of mouse liver than of rat liver. No hydroxylase activity was detected in the Golgi membrane preparations. It is therefore proposed that the cytoplasmic ratio of CMP-Neu5Ac and CMP-Neu5Gc produced by the hydroxylase, remains largely unmodified after CMP-glycoside uptake into the Golgi apparatus and transfer on to growing glycoconjugate glycan chains. The close relationship between the total sialic acid composition and the sialic acid pattern in the CMP-glycoside pools of the tissues lends considerable weight to this hypothesis.  相似文献   

13.
The CMP-sialic acid synthetase (CMP-Neu5Ac, synthetase) is responsible for the synthesis of CMP-Neu5Ac, which is the donor used by sialyltransferases to attach sialic acid to acceptor hydroxyl groups in various polysaccharides, glycolipids, and glycoproteins. Since CMP-Neu5Ac is unstable and relatively expensive, the CMP-Neu5Ac synthetase is valuable for the preparative enzymatic synthesis of sialylated oligosaccharides. We made a construct to over-express the Neisseria meningitidis CMP-Neu5Ac synthetase in Escherichia coli. The recombinant enzyme was expressed at very high level (over 70,000 U/L) in a soluble form. It was purified by a sequence of anion-exchange chromatography and gel filtration with an overall yield of 23% (specific activity 220 U/mg). The purified CMP-Neu5Ac synthetase was used in the gram-scale synthesis of CMP-Neu5Ac.  相似文献   

14.
We report the postnatal developmental profiles of N-acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-Neu5Ac synthetase) in different rat tissues. This enzyme, which catalyses the activation of NeuAc to CMP-Neu5Ac, was detected in brain, kidney, heart, spleen, liver, stomach, intestine, lung, thymus, prostate and urinary bladder but not in skeletal muscle. Comparative analysis of the different specific activity profiles obtained shows that the expression of CMP Neu5Ac synthetase is tissue-dependent and does not seem to be embryologically determined. Changes in the level of sialylation during development were also found to be intimately related to variations in the expression of this enzyme, at least in brain, heart, kidney, stomach, intestine and lung.  相似文献   

15.
N-Glycolylneuraminic acid in human tumours   总被引:6,自引:0,他引:6  
Malykh YN  Schauer R  Shaw L 《Biochimie》2001,83(7):623-634
N-Glycolylneuraminic acid (Neu5Gc) is an abundant sialic acid, occurring in the glycoconjugates of most deuterostome animals. Homo sapiens is a notable exception, since Neu5Gc is effectively absent from normal human tissues. This is due to a deletion in the human gene coding for CMP-Neu5Ac hydroxylase, the enzyme usually responsible for Neu5Gc biosynthesis. Despite this mutation, persistent reports in the literature suggest that Neu5Gc occurs in the glycoconjugates of many human tumours, where it might be responsible for the formation of so-called Hanganutziu-Deicher antibodies. However, the variety of systems studied and the various experimental approaches adopted have yielded a complex picture of Neu5Gc occurrence in human neoplasias. The aim of this paper is therefore to provide a critical review of the evidence for Neu5Gc in human tumours, paying particular attention to the analytical methods employed. The possible clinical applications of Neu5Gc-containing glycoconjugates and Hanganutziu-Deicher antibodies in the diagnosis and treatment of breast cancer and melanoma are also discussed. In view of the lack of CMP-Neu5Ac hydroxylase in human cells, alternative metabolic pathways for the biosynthesis of glycoconjugate-bound Neu5Gc are considered.  相似文献   

16.
The membrane-bound sialyltransferase obtained from Escherichia coli K-235 grown in a chemically defined medium (ideal for colominic acid production) was studied. The in vivo half-life calculated for this enzyme was 20 h. Kinetic tests revealed (at 33 degrees C and pH 8.3) hyperbolic behaviour with respect to CMP-Neu5Ac (Km250 microM) and a transition temperature at 31.3 degrees C. The enzyme was inhibited by NH4+, some divalent cations and by several agents that react with thiol groups. Detergents and fatty acids also inhibited the sialyltransferase activity. In vitro synthesis of colominic acid is strongly inhibited by CMP by blocking the incorporation of [14C]Neu5Ac into a protein-complex intermediate and therefore into free polymer. CDP and CTP also inhibited (91% and 84%) this enzyme activity whereas cytosine and cytidine had no effect. CMP inhibition corresponded to a competitive model the calculated Ki was 30 microM. Incubations of protein[14C]Neu5Ac with CMP, CDP and CTP led to de novo synthesis of CMP-[14C]Neu5Ac. The presence of colominic acid, which usually displaces the reaction equilibrium towards polymer synthesis, did not affect this de novo CMP-[14C]Neu5Ac formation. CMP also inhibited in vivo colominic acid biosynthesis.  相似文献   

17.
The sialic acid N-glycolylneuraminic acid (Neu5Gc) is formed by cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac) hydroxylase (EC 1.14.13.45). The enzyme from mammals exhibits several unusual characteristics, raising questions about its evolution. Since echinoderms are the most primitive organisms possessing glycoconjugate-bound Neu5Gc, studies on the hydroxylase from members of this phylum may yield insights into the origin and development of the hydroxylase. Investigations on crude CMP-Neu5Ac hydroxylase in gonads from the starfish Asterias rubens revealed that it shares many properties with its mammalian counterpart. However, the echinoderm hydroxylase also exhibits fundamental differences, particularly its association with a membrane and a requirement for high ionic strength for optimal activity. Here, we describe the isolation of the CMP-Neu5Ac hydroxylase from A. rubens gonads using anion exchange chromatography and chromatography on immobilized cytochrome b(5). The enzyme was enriched 137-fold with a yield of 13%. The preparation exhibited a main polypeptide of 76 kDa, consistent with a cDNA sequence published earlier, and a minor protein of 64 kDa. A kinetic characterization showed that salt activation of this enzyme results from an increase in affinity for CMP-Neu5Ac. Evidence for the formation of a ternary complex of hydroxylase, CMP-Neu5Ac and cytochrome b(5) is also presented. The mechanistic and physiological significance of these results is discussed.  相似文献   

18.
CMP-Kdn synthetase catalyses the reaction of sialic acids (Sia) and cytidine-5'-triphosphate (CTP) to the corresponding activated sugar nucleotide CMP-Sia and pyrophosphate PP(i). STD NMR experiments of a recombinant nucleotide cytidine-5'-monophosphate-3-deoxy-d-glycero-d-galacto-nonulosonic acid synthetase (CMP-Kdn synthetase) were performed to map the binding epitope of the substrate CTP and the product CMP-Neu5Ac. The STD NMR analysis clearly shows that the anomeric proton of the ribose moiety of both investigated compounds is in close proximity to the protein surface and is likely to play a key role in the binding process. The relative rates of the enzyme reaction, derived from (1)H NMR signal integrals, show that Kdn is activated at a rate 2.5 and 3.1 faster than Neu5Ac and Neu5Gc, respectively. Furthermore, proton-decoupled (31)P NMR spectroscopy was successfully used to follow the enzyme reaction and clearly confirmed the appearance of CMP-Sia and the inorganic pyrophosphate by-product.  相似文献   

19.
The biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc) occurs by the action of cytidine monophosphate-N-acetylneuraminate (CMP-Neu5Ac) hydroxylase. Previous investigations on a limited number of tissues suggest that the activity of this enzyme governs the extent of glycoconjugate sialylation with Neu5Gc. Using improved analytical procedures and a panel of nine porcine tissues, each expressing different amounts of Neu5Gc, we have readdressed the issue of the regulation of Neu5Gc incorporation into glycoconjugates. The following parameters were measured for each tissue: the molar ratio Neu5Gc/Neu5Ac, the activity of the hydroxylase, and the relative amount of hydroxylase protein, as determined by enzyme-linked immunosorbent assay (ELISA). A positive correlation between the activity of the hydroxylase and the molar ratio Neu5Gc/Neu5Ac was observed for each tissue. In addition, the hydroxylase activity correlated with the amount of enzyme protein, though in heart and lung disproportionately large amounts of immunoreactive protein were detected. Taken together, the results suggest that the incorporation of Neu5Gc into glycoconjugates is generally controlled by the amount of hydroxylase protein expressed in a tissue.  相似文献   

20.
The outermost positions of mammalian cell-surface glycans are predominantly occupied by the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). To date, hydroxylation of CMP-Neu5Ac resulting in the conversion into CMP-Neu5Gc is the only known enzymatic reaction in mammals to synthesize a monosaccharide carrying an N-glycolyl group. In our accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, jbc.M112.363549), we report a metabolic pathway for degradation of Neu5Gc, demonstrating that N-acetylhexosamine pathways are tolerant toward the N-glycolyl substituent of Neu5Gc breakdown products. In this study, we show that exogenously added N-glycolylgalactosamine (GalNGc) serves as a precursor for Neu5Gc de novo biosynthesis, potentially involving seven distinct mammalian enzymes. Following the GalNAc salvage pathway, UDP-GalNGc is epimerized to UDP-GlcNGc, which might compete with the endogenous UDP-GlcNAc for the sialic acid biosynthetic pathway. Using UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase-deficient cells, we confirm that conversion of GalNGc into Neu5Gc depends on this key enzyme of sialic acid biosynthesis. Furthermore, we demonstrate by mass spectrometry that the metabolic intermediates UDP-GalNGc and UDP-GlcNGc serve as substrates for assembly of most major classes of cellular glycans. We show for the first time incorporation of GalNGc and GlcNGc into chondroitin/dermatan sulfates and heparan sulfates, respectively. As demonstrated by structural analysis, N-glycolylated hexosamines were found in cellular gangliosides and incorporated into Chinese hamster ovary cell O-glycans. Remarkably, GalNAc derivatives altered the overall O-glycosylation pattern as indicated by the occurrence of novel O-glycan structures. This study demonstrates that mammalian N-acetylhexosamine pathways and glycan assembly are surprisingly tolerant toward the N-glycolyl substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号