首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the role of tendon fibroblast contraction in tendon healing, we investigated the contraction of human patellar tendon fibroblasts (HPTFs) and its regulation by transforming growth factor-beta1 (TGF-beta1), TGF-beta3, and prostaglandin E(2) (PGE(2)). HPTFs were found to wrinkle the underlying thin silicone membranes, demonstrating that these tendon fibroblasts are contractile. Using fibroblast populated collagen gels (FPCGs), exogenous addition of TGF-beta1 or TGF-beta3 was found to increase fibroblast contraction compared to non-treated fibroblasts in serum-free medium, whereas PGE(2) was found to decrease the tendon fibroblast contraction. Moreover, the tendon fibroblasts in collagen gels treated with TGF-beta1 contracted to a greater degree than those treated with TGF-beta3. Since the extent of fibroblast contraction is related to scar tissue formation, this differential effect of TGF-beta1 and TGF-beta3 on HPTF contraction supports the previous finding that TGF-beta1 induces scar tissue formation, whereas TGF-beta3 reduces its formation. Further, the reduced tendon fibroblast contraction by PGE(2) suggests that excessive presence of this inflammatory mediator in the wound site might retard tendon healing. Taken together, the results of this study suggest that regulation of human tendon fibroblast contraction may reduce scar tissue formation and therefore improve the mechanical properties of healing tendons.  相似文献   

2.
Effects of cyclic stress on the mechanical properties of collagen fascicles were studied by in vitro tissue culture experiments. Collagen fascicles (approximately 300 microns in diameter) obtained from the rabbit patellar tendon were applied cyclic load at 4 Hz for one hour per day during culture period for one or two weeks, and then their mechanical properties were determined using a micro-tensile tester. There was a statistically significant correlation between tensile strength and applied peak stress in the range of 0 to 5 MPa, and the relation was expressed by a quadratic function. The maximum strength (19.4 MPa) was obtained at the applied peak stress of 1.8 MPa. The tensile strength of fascicles were within a range of control values, if they were cultured under peak stresses between 1.1 and 2.6 MPa. Similar results were also observed in the tangent modulus, which was maintained at control level under applied peak stresses between 0.9 and 2.8 MPa. The stress of 0.9 to 1.1 MPa is equivalent to approximately 40% of the in vivo peak stress which is developed in the intact rabbit patellar tendon by running, whereas that of 2.6 to 2.8 MPa corresponds to approximately 120% of the in vivo peak stress. Therefore, the fascicles cultured under applied peak stresses of lower than 40% and higher than 120% of the in vivo peak stress do not keep the original strength and modulus. These results indicate that the mechanical properties of cultured collagen fascicles strongly depend upon the magnitude of the stress applied during culture, which are similar to our previous results observed in stress-shielded and overstressed patellar tendons in vivo.  相似文献   

3.
Mechanical properties of collagen fascicles from the rabbit patellar tendon   总被引:1,自引:0,他引:1  
Tensile and viscoelastic properties of collagen fascicles of approximately 300 microns in diameter, which were obtained from rabbit patellar tendons, were studied using a newly designed micro-tensile tester. Their cross-sectional areas were determined with a video dimension analyzer combined with a CCD camera and a low magnification microscope. There were no statistically significant differences in tensile properties among the fascicles obtained from six medial-to-lateral locations of the patellar tendon. Tangent modulus, tensile strength, and strain at failure of the fascicles determined at about 1.5 percent/s strain rate were 216 +/- 68 MPa, 17.2 +/- 4.1 MPa, and 10.9 +/- 1.6 percent (mean +/- S.D.), respectively. These properties were much different from those of bulk patellar tendons; for example, the tensile strength and strain at failure of these fascicles were 42 percent and 179 percent of those of bulk tendons, respectively. Tangent modulus and tensile strength of collagen fascicles determined at 1 percent/s strain rate were 35 percent larger than those at 0.01 percent/s. The strain at failure was independent of strain rate. Relaxation tests showed that the reduction of stress was approximately 25 percent at 300 seconds. These stress relaxation behavior and strain rate effects of collagen fascicles differed greatly from those of bulk tendons. The differences in tensile and viscoelastic properties between fascicles and bulk tendons may be attributable to ground substances, mechanical interaction between fascicles, and the difference of crimp structure of collagen fibrils.  相似文献   

4.
Growth-related changes in the mechanical properties of collagen fascicles (approximately 300 microm in diameter) were studied using patellar tendons obtained from skeletally immature 1 and 2 months old and matured 6 months old rabbits. Tensile properties were determined using a specially designed micro-tensile tester. In each age group, there were no significant differences in the properties among cross-sectional locations in the tendon. Tangent modulus and tensile strength significantly increased with age; the rates of their increases between 1 and 2 months were higher than those between 2 and 6 months. The tangent modulus and tensile strength were positively correlated with the body weight of animals. However, growth-related changes in the mechanical properties were different between collagen fascicles and bulk patellar tendons, which may be attributable to such non-collagenous components as ground substances and also to mechanical interactions between collagen fascicles.  相似文献   

5.
The effects of frequency or duration of cyclic stress on the mechanical properties of collagen fascicles were studied by means of in vitro tissue culture experiments. Collagen fascicles of approximately 300 microm in diameter were obtained from rabbit patellar tendons. During culture, cyclic stress having the peak stress of approximately 2 MPa was applied to the fascicles at 1 Hz for 1 hour/day (1 Hz-1 h group), at 1 Hz for 4 hours/day (1 Hz-4 h group), or at 4 Hz for 1 hour/day (4 Hz-1 h group). The frequency of 4 Hz and the duration of 1 hour/day are considered to be similar to those of the in vivo stress applied to fascicles in the intact rabbit patellar tendon. After culture for 1 or 2 weeks, the mechanical properties of the fascicles were determined using a microtensile tester, and were compared to the properties of non-cultured, fresh fascicles (control group) and the fascicles cultured under no load condition (non-loaded group). The tangent modulus and tensile strength of fascicles in the 4 Hz-1 h group were similar to those in the control group; however, the fascicles of the 1 Hz-1 h and 1 Hz-4 h groups had significantly lower values than those of the control group. There was no significant difference in the tensile strength between the 1 Hz-1 h and non-loaded groups, although the strength in the 1 Hz-4 h group was significantly higher than that of the non-loaded group. It was concluded that the frequency and duration of cyclic stress significantly affect the mechanical properties of cultured collagen fascicles. If we apply cyclic stress having the frequency and duration which are experienced in vivo, the biomechanical properties are maintained at control, normal level. Lower frequencies or less cycles of applied force induce adverse effects.  相似文献   

6.
In-vitro tissue culture experiments were performed to study the effects of static stress on the mechanical properties of collagen fascicles obtained from the rabbit patellar tendon. After collagen fascicles having the diameter of approximately 300 microm were cultured for 1 and 2 wk under static stress between 0 and 3 MPa, their mechanical properties and crimp morphology were determined using a micro-tensile tester and a light microscope, respectively. The tensile strength and tangent modulus of the fascicles were significantly decreased by culture under no load compared to control fascicles. A statistically significant correlation, which was described by a quadratic curve, was observed between applied stress and tensile strength. The maximum tensile strength (16.7 MPa) was obtained at the applied stress of 1.2 MPa; the strength was within a range of control values. There was a similar correlation between applied stress and tangent modulus, and the modulus was maintained at control level under 1.3 MPa stress. The stress of 1.2 to 1.3 MPa is equivalent to approximately 50 percent of the peak stress developed in the intact rabbit patellar tendon by running. Strain at failure of cultured collagen fascicles was negatively correlated with applied stress, and that at 1.2 to 1.3 MPa stress was almost the same as the control value. Crimp morphology in the fascicles cultured under about 1.2 MPa stress was similar to that in control fascicles. These results indicate that cultured collagen fascicles change the mechanical properties and structure in response to static tensile stress. In addition, their mechanical properties and structure are maintained at control level if the static stress of 50 percent of in-vivo peak stress is applied.  相似文献   

7.
Previous studies have shown that, in the stress-shielded patellar tendon, the mechanical properties of the tendon were dramatically reduced and TGF-beta was over-expressed in tendon fibroblasts. In the present study, therefore, we tested two supportive hypotheses using 40 rabbits: One was that an application of TGF-beta1 might significantly increase the tensile strength and the tangent modulus of the stress-shielded patellar tendon. The other one was that an administration of anti-TGF-beta1 antibody might significantly reduce the mechanical properties of the stress-shielded patellar tendon. In the results, an application of 4-ng TGF-beta1 significantly increased the tangent modulus of the stress-shielded patellar tendon at 3 weeks (p = 0.019), compared with the sham treatment. Concerning the tensile strength, the 4-ng TGF-beta1 application increased the average value, but a statistical significance was not reached. An application of 50-microg anti-TGF-beta1 antibody significantly reduced the tangent modulus and the tensile strength of the stress-shielded patellar tendon at 3 weeks (p = 0.0068 and p = 0.0355), compared with the sham treatment. Because the stress-shielding treatment used in this study dramatically reduces the tangent modulus and the tensile strength of the patellar tendon, the present study suggested that an administration of TGF-beta1 weakly but significantly inhibited the reduction of the mechanical properties of the stress-shielded patellar tendon, and that inactivation of TGF-beta1 with its antibody significantly enhanced the reduction of the mechanical properties that occurs in the stress-shielded patellar tendon. These results suggested that TGF-beta1 plays an important role in remodeling of the stress-shielded patellar tendon.  相似文献   

8.
We previously found that interleukin (IL)-1beta is over-expressed in the fibroblasts of the stress-shielded patellar tendon using a stress-shielding model [Uchida, H., Tohyama, H., Nagashima, K., Ohba, Y., Matsumoto, H., Toyama, Y., Yasuda, K., 2005. Stress deprivation simultaneously induces over-expression of interleukin-1beta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendon. Journal of Biomechanics 38(4), 791-798.]. Therefore, IL-1beta may play a role in tendon deterioration in response to stress deprivation. This study was conducted to clarify the effects of local administration of interleukin-1 receptor antagonist (IL-1ra) on the mechanical properties of the stress-shielded patellar tendon as well as the tendon fascicles harvested from it. Twenty-six mature rabbits were equally divided into Groups IL-1ra and PBS after the right patellar tendon underwent the stress-shielding treatment, which completely released the patellar tendon from tension by stretching the flexible wire installed between the patella and the tibial tubercle. In Group IL-1ra, IL-1ra was injected between the patellar tendon and the infra-patellar fat pad. In Group PBS, phosphate-buffered saline was injected in the same manner as IL-1ra. All rabbits were evaluated at 3 weeks after the stress-shielding procedure. The tangent modulus and the tensile strength of the patellar tendons were significantly greater in Group IL-1ra than in Group PBS, while there was no significant difference in the strain at failure between Groups IL-1ra and PBS. Concerning the mechanical properties of the fascicles harvested from the patellar tendon, however, we could not detect any significant differences in the tangent modulus, tensile strength, or strain at failure between Groups IL-1ra and PBS. The present study suggested that IL-1 plays an important role in the deterioration of the mechanical properties of the patellar tendon in response to stress shielding and that IL-1 does not affect the fascicles themselves.  相似文献   

9.
Lateral force transmission between human tendon fascicles.   总被引:2,自引:0,他引:2  
Whether adjacent collagen fascicles transmit force in parallel is unknown. The purpose of the present study was to examine the magnitude of lateral force transmission between adjacent collagen fascicles from the human patellar and Achilles tendon. From each sample two adjacent strands of fascicles (phi 300-530 mum) enclosed in a fascicular membrane were dissected. The specimen was deformed to approximately 3% strain in three independent load-displacement cycles in a small-scale tensile testing device. Cycle 1: the fascicles and the fascicular membrane were intact. Cycle 2: one fascicle was transversally cut while the other fascicle and the fascicular membrane were kept intact. Cycle 3: both fascicles were cut in opposite ends while the fascicular membrane was left intact. A decline in peak force of 45% and 55% from cycle 1 to cycle 2, and 93% and 92% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. A decline in stiffness of 39% and 60% from cycle 1 to cycle 2, and of 93% and 100% from cycle 2 to cycle 3 was observed in the patellar and Achilles tendon fascicles, respectively. The present data demonstrate that lateral force transmission between adjacent collagen fascicles in human tendons is small or negligible, suggesting that tendon fascicles largely act as independent structures and that force transmission principally takes place within the individual fascicles.  相似文献   

10.
Repaired tendons may be complicated by progressive fibrosis, causing adhesion formation or tendon softening leading to tendon rupture and subsequent reduced range of motion. There are few therapies available which improve the gliding of damaged tendons in the hand. We investigate the role of Mannose 6-phosphate (M6P) in a 600 mM hypertonic solution (Adaprev) on tendon adhesion formation in vivo using a mouse model of severed tendon in conjunction with analysis of collagen synthesis, cellular proliferation and receptors involved in TGF beta signalling. Cytotoxicity was assessed by measuring tissue residency, mechanical strength and cell viability of tendons after treatment with Adaprev. To elicit potential modes of action, in vitro and ex vivo studies were performed investigating phosphorylation of p38, cell migration and proliferation. Adaprev treatment significantly (p<0.05) reduced the development of adhesions and improved collagen organisation without reducing overall collagen synthesis following tendon injury in vivo. The bioavailability of Adaprev saw a 40% reduction at the site of administration over 45 minutes and tendon fibroblasts tolerated up to 120 minutes of exposure without significant loss of cell viability or tensile strength. These favourable effects were independent of CI-MPR and TGF-β signalling and possibly highlight a novel mechanism of action related to cellular stress demonstrated by phosphorylation of p38. The effect of treatment reduced tendon fibroblast migration and transiently halted tendon fibroblast proliferation in vitro and ex vivo. Our studies demonstrate that the primary mode of action for Adaprev is potentially via a physical, non-chemical, hyperosmotic effect.  相似文献   

11.
12.
We studied the effect of cyclic mechanical stretching on the proliferation and collagen mRNA expression and protein production of human patellar tendon fibroblasts under serum-free conditions. The role of transforming growth factor-beta1 (TGF-beta1) in collagen production by cyclically stretched tendon fibroblasts was also investigated. The tendon fibroblasts were grown in microgrooved silicone dishes, where the cells were highly elongated and aligned with the microgrooves. Cyclic uniaxial stretching with constant frequency and duration (0.5 Hz, 4 h) but varying magnitude of stretch (no stretch, 4%, and 8%) was applied to the silicone dishes. Following the period of stretching, the cells were rested for 20 h in stretching-conditioned medium to allow for cell proliferation. In separate experiments, the cells were stretched for 4h and then rested for another 4 h. Samples of the medium, total cellular RNA and protein were used for analysis of collagen and TGF-beta1 gene expression and production. It was found that there was a slight increase in fibroblast proliferation at 4% and 8% stretch, compared to that of non-stretched fibroblasts, where at 8% stretch the increase was significant. It was also found that the gene expression and protein production of collagen type I and TGF-beta1 increased in a stretching-magnitude-dependent manner. And, levels of collagen type III were not changed, despite gene expression levels of the protein being slightly increased. Furthermore, the exogenous addition of anti-TGF-beta1 antibody eliminated the increase in collagen type I production under cyclic uniaxial stretching conditions. The results suggest that mechanical stretching can modulate proliferation of human tendon fibroblasts in the absence of serum and increase the cellular production of collagen type I, which is at least in part mediated by TGF-beta1.  相似文献   

13.
In vitro tissue culture experiments were performed to study the biomechanical response of collagen fascicles to restressing after exposure to non-loaded condition. Collagen fascicles of approximately 300 microm in diameter were aseptically dissected from rabbit patellar tendons. They were cultured under no-load condition for 1 week, and then under a static stress of approximately 1.2 MPa for the subsequent 1 or 2 weeks. After culture, their mechanical properties were determined with a micro-tensile tester, and were compared to those of fascicles cultured under no-load condition and non-cultured, control fascicles. Tangent modulus and tensile strength of the non-loaded fascicles were significantly lower than those of the control fascicles at 1 week and gradually decreased thereafter. However, the modulus and strength were increased by restressing. After 2-week restressing, both parameters were significantly greater than those of the time-matched, non-loaded fascicles, although these values were still significantly lower than those of the control fascicles. That is, the application of stress after exposure to non-loaded condition suppressed the deterioration of the biomechanical properties of fascicles, although it did not improve. These results indicate that a short period of stressing is not sufficient for cultured collagen fascicles to completely recover their mechanical properties, if they are once exposed to no-stress condition even for a short period of time. These are similar to previous results observed in tendons and ligaments inside the body.  相似文献   

14.
The purpose of the present study is to determine the effect of the stress enhancement and intrinsic fibroblasts on the extracellular matrix of the patellar tendon. Thirty-two female Japanese White rabbits were divided into four groups. In Group 1, the patellar tendon underwent the in situ freeze-thaw treatment to kill intrinsic fibroblasts of the patellar tendon and the patellar tendon underwent the wrapping treatment with nylon membrane filters to inhibit extrinsic cell infiltration. In Group 2, the medial and the lateral portions of the frozen-thawed patellar tendon were resected to enhance the stress, and then the central two-thirds of the patellar tendon underwent the wrapping treatment. In Group 3, the patellar tendon without the freeze/thaw treatment underwent the wrapping treatment. In Group 4, the patellar tendon was narrowed and wrapped in the same manner. All rabbits were killed 6 weeks after surgery. While the elastic modulus and the tensile strength of the patellar tendon in Group 2 were significantly less than those in Group 1, we could not find any significant differences in these parameters between Groups 3 and 4. Histologically, while no fibroblasts were observed in Groups 1 and 2, fibroblasts were found in Groups 3 and 4. This study revealed that stress enhancement decreases the elastic modulus and the tensile strength of the extracellular matrix of the patellar tendon and that intrinsic fibroblasts prevent the detrimental effect of stress enhancement on mechanical properties of the patellar tendon.  相似文献   

15.
To test the hypothesis that stress deprivation induces over-expression of cytokines in the patellar tendon, 40 rats were divided into the following two groups. In the stress-shielded group, we slackened the patellar tendon in the right knee by drawing the patella toward the tibial tubercle with flexible wires. In the control group, we performed a sham operation on the right knee. Animals were killed at 2 or 6 weeks for immunohistological evaluation and biomechanical examination. For IL-1beta, TNF-alpha and TGF-beta, the ratio of positively stained specimens to total specimens was significantly higher in the stress-shielded tendons than in the control tendons. The elastic modulus of the stress-shielded tendon was significantly lower than that of the control tendon, while the cross-sectional area of the stress-shielded tendon was significantly greater than that of the control tendon. Therefore, the present study indicated that stress shielding induced the over-expression of IL-1beta, TNF-alpha and TGF-beta in patellar tendon fibroblasts with mechanical deterioration of the tendon. Regarding clinical relevance, the present study suggests a possible application of an anti-IL-1beta or anti-TNF-alpha strategy for reducing the mechanical deterioration of tendons and ligaments in response to stress deprivation, although this study did not directly show that over-expression of IL-1beta or TNF-alpha in response to stress deprivation was the causation of mechanical deterioration of tendons.  相似文献   

16.
Fu SC  Wong YP  Chan BP  Pau HM  Cheuk YC  Lee KM  Chan KM 《Life sciences》2003,72(26):2965-2974
Recombinant human (rh) bone morphogenetic protein 12 (BMP12) is proved to induce the formation of tendon and ligament tissues in animal experiments. But the roles of BMP12 on tissue regeneration in human tendons remain unexplored. In the present study, healthy human patellar tendon samples were collected for histological examination and preparation of tendon fibroblast culture. Immunohistochemical staining showed that BMP12 was detected on healthy patellar tendon samples, only located on active tenoblasts and perivascular mesenchymal cells but not in interstitial tenocytes. The expression of PCNA and procollagen type I also exhibited a similar distribution. It indicates that BMP12 may be involved in matrix remodeling process in adult tissues. In vitro studies showed that rhBMP12 could increase proliferation of tendon fibroblasts and increase the gene expression of procollagen type I and type III, but decrease the gene expression of decorin in tendon fibroblasts culture. Our findings suggest that BMP12 may play a role in early phases of tissue regeneration in tendons.  相似文献   

17.
This study was performed to determine the contribution of extrinsic cell infiltration and revascularization into the patellar tendon in alteration of the mechanical properties of the patellar tendon after intrinsic fibroblast necrosis using 77 rabbits. In Group I, after the patellar tendon underwent the in situ freeze-thaw treatment, a wrapping treatment was performed to inhibit any extrinsic cell infiltration into the tendon. In Group II, the patellar tendon underwent the freeze-thaw treatment without any of the wrapping treatment. In Group III, the patellar tendon underwent the same wrapping treatment but without any freeze-thaw treatment. The cell culture study demonstrated that the in situ freeze-thaw treatment killed from 97 to 100 percent of the cells in the patellar tendon. Histologically, no cells were found in the midsubstance of the patellar tendon in Group I at 1, 3, and 6 weeks. In Group II, a number of cells and some vessels were found scattered in the tendon at 3 and 6 weeks. Mechanically, the elastic modulus and the tensile strength of the patellar tendon of Group II were significantly lower than those of Groups I and III at 3 and 6 weeks. These facts suggest that extrinsic cell infiltration and revascularization from the surrounding tissues accelerate the deterioration of the mechanical properties of the patellar tendon matrix after intrinsic fibroblast necrosis.  相似文献   

18.
Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.  相似文献   

19.
With the aim of studying mechanisms of the remodeling of tendons and ligaments, the effects of stress shielding on the rabbit patellar tendon were studied by performing tensile and stress relaxation tests in the transverse direction. The tangent modulus, tensile strength, and strain at failure of non-treated, control patellar tendons in the transverse direction were 1272 kPa, 370 kPa, and 40.5 percent, respectively, whereas those of the tendons stress-shielded for 1 week were 299 kPa, 108 kPa, and 40.4 percent, respectively. Stress shielding markedly decreased tangent modulus and tensile strength in the transverse direction, and the decreases were larger than those in the longitudinal direction, which were determined in our previous study. For example, tensile strength in the transverse and longitudinal direction decreased to 29 and 50 percent of each control value, respectively, after 1 week stress shielding. In addition, the stress relaxation in the transverse direction of stress-shielded patellar tendons was much larger than that of nontreated, control ones. In contrast to longitudinal tensile tests for the behavior of collagen, transverse tests reflect the contributions of ground substances such as proteoglycans and mechanical interactions between collagen fibers. Ground substances provide lubrication and spacing between fibers, and also confer viscoelastic properties. Therefore, the results obtained from the present study suggest that ground substance matrix, and interfiber and fiber-matrix interactions have important roles in the remodeling response of tendons to stress.  相似文献   

20.
Mechanical loading of tissue is known to influence local collagen synthesis, and microdialysis studies indicate that mechanical loading of human tendon during exercise elevates tendinous type I collagen production. Transforming growth factor-beta1 (TGF-beta1), a potent stimulator of type I collagen synthesis, is released from cultured tendon fibroblasts in response to mechanical loading. Thus TGF-beta1 could link mechanical loading and collagen synthesis in tendon tissue in vivo. Tissue levels of TGF-beta1 and type I collagen metabolism markers [procollagen I COOH-terminal propeptide (PICP) and COOH-terminal telopeptide of type I collagen (ICTP)] were measured by microdialysis in peritendinous tissue of the Achilles' tendon in six male volunteers before and after treadmill running (1 h, 12 km/h, 3% uphill). In addition, blood levels of TGF-beta1, PICP, and ICTP were obtained. PICP levels increased 68 h after exercise (P < 0.05). Dialysate levels of TGF-beta1 changed from 303 +/- 46 pg/ml (at rest) to 423 +/- 86 pg/ml 3 h postexercise. This change was nonsignificant, but the decay of tissue TGF-beta1 after catheter insertion was markedly delayed by exercise compared with the decay seen in resting subjects. Plasma concentrations of TGF-beta1 rose 30% in response to exercise (P < 0.05 vs. pre). Our observations indicate an increased local production of type I collagen in human peritendinous tissue in response to uphill running. Although not conclusive, changes in circulating and local TGF-beta1, in response to exercise, suggest a role for TGF-beta1 in mechanical regulation of local collagen type I synthesis in tendon-related connective tissue in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号