首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome P450 enzyme systems catalyze the metabolism of a wide variety of naturally occurring and foreign compounds by reactions requiring NADPH and O2. Cytochrome P450 also catalyzes peroxide-dependent hydroxylation of substrates in the absence of NADPH and O2. Peroxidases such as chloroperoxidase and horseradish peroxidase catalyze peroxide-dependent reactions similar to those catalyzed by cytochrome P450. The kinetic and chemical mechanisms of the NADPH and O2-supported dealkylation reactions catalyzed by P450 have been investigated and compared with those catalyzed by P450 and peroxidases when the reactions are supported by peroxides. Detailed kinetic studies demonstrated that chloroperoxidase- and horseradish peroxidase-catalyzed N-demethylations proceed by a Ping Pong Bi Bi mechanism whereas P450-catalyzed O-dealkylations proceed by sequential mechanisms. Intramolecular isotope effect studies demonstrated that N-demethylations catalyzed by P450s and peroxidases proceed by different mechanisms. Most hemeproteins investigated catalyzed these reactions via abstraction of an alpha-carbon hydrogen whereas reactions catalyzed by P-450 and chloroperoxidase proceeded via an initial one-electron oxidation followed by alpha-carbon deprotonation. 18O-Labeling studies of the metabolism of NMC also demonstrated differences between the peroxidases and P450s. Because the hemeprotein prosthetic groups of P450, chloroperoxidase, and horseradish peroxidase are identical, the differences in the catalytic mechanisms result from differences in the environments provided by the proteins for the heme active site. It is suggested that the axial heme-iron thiolate moiety in P450 and chloroperoxidase may play a critical role in determining the mechanism of N-demethylation reactions catalyzed by these proteins.  相似文献   

2.
Intramolecular isotope effects were determined for the N-demethylation of N-methyl-N-trideuteriomethylaniline catalyzed by two isozymes of cytochrome P-450 and several peroxidases in order to differentiate between deprotonation and hydrogen atom abstraction steps. Lactoperoxidase, hemoglobin, myoglobin, and two isozymes of horseradish peroxidase catalyzed the hydroperoxide-dependent N-demethylation at initial rates ranging from 20 to 1700 min-1. These hemeproteins exhibited large and comparable intramolecular isotope effects (kH/kD = 8.6 to 10.1). In contrast, two isozymes of cytochrome P-450 as well as chloroperoxidase (v = 1.5 to 1700 min-1) gave low isotope effects (kH/kD = 1.7 to 3.1) under identical conditions. Catalase exhibited an intermediate intramolecular isotope effect (kH/kD = 5.4). These results have been interpreted to indicate that most of the hemeproteins investigated catalyze N-demethylation reactions via alpha-carbon hydrogen atom abstraction, while the reactions catalyzed by cytochrome P-450 and chloroperoxidase proceed via alpha-carbon deprotonation.  相似文献   

3.
R Makino  R Chiang  L P Hager 《Biochemistry》1976,15(21):4748-4754
The oxidation-reduction potential of chloroperoxidase, an enzyme which catalyzes peroxidative chlorination, bromination, and iodination reactions, has been investigated. In addition to catalyzing biological halogenation reactions, chloroperoxidase is unusual in that the carbon monoxide complex of ferrous chloroperoxidase shows the typical long wavelength Soret absorption associated with P-450 hemoproteins. The pH dependence of the chloroperoxidase oxidation-reduction potential shows a discontinuity around pH 4.7. Similarly, measurements of the affinity of ferrous chloroperoxidase for carbon monoxide monitored both by spectroscopic and potentiometric titration exhibit a discontinuity in the pH 4.7 region. Oxidation-reduction potential measurements on chloroperoxidase in a CO atmosphere also show a discontinuous pH profile. These results suggest that ferrous chloroperoxidase undergoes reversible modification at low pH and that these changes are reflected in the oxidation-reduction potential. The oxidation-reduction potential of chloroperoxidase at pH 6.9 is - 140 mV, close to that measured for cytochrome P-450cam in the presence of substrate. The oxidation-reduction potential of chloroperoxidase at pH 2.7, the pH optimum for enzymatic chlorination, is +150 mV. The oxidation-reduction potentials of the halide complexes of chloroperoxidase (chloride, bromide, and iodide) are essentially identical with the potential measurements on the native enzyme. These observations suggest that, although halide anions bind to the enzyme, they probably do not bind as an axial ligand to the heme ferric iron.  相似文献   

4.
In this report, we have examined the origin of the electrophilic chlorine formed during the microsomal metabolism of carbon tetrachloride and the possibility that liver microsomal proteins catalyze chloroperoxidase or myeloperoxidase halogenation reactions. Studies with stable isotopes of chlorine show that at least 99% of the trapped chlorine originated from carbon tetrachloride. When hydrogen peroxide or cumene hydroperoxide was added to liver microsomes in the presence of chloride ion, no trapped chlorine was observed. Thus, cytochrome P-450 does not catalyze chloroperoxidase type chloride ion oxidation but instead catalyzes a reaction leading to cleavage of a carbon-chlorine bond with concomitant chlorine atom oxidation.  相似文献   

5.
A preparation of partially purified cytochrome P-450 from rat liver microsomes was found to catalyze 12α-hydroxylation of 7α-hydroxy-4-cholesten-3-one in the presence of NADPH and phosphatidyl choline. The reaction was stimulated two- to four-fold by addition of a preparation of cytochrome P-450 reductase. The reaction was inhibited by carbon monoxide to a considerably less extent than other hydroxylations catalyzed by the reconstituted system. In the presence of optimal concentrations of cytochrome P-450 reductase, cytochrome P-450 prepared from livers of starved rats catalyzed the 12α-hydroxylation more efficiently than cytochrome P-450 prepared from livers of normal rats or rats treated with phenobarbital.  相似文献   

6.
Chloroperoxidase and H2O2 oxidize styrene to styrene oxide and phenylacetaldehyde but not benzaldehyde. The epoxide oxygen is shown by studies with H2(18)O2 to derive quantitatively from the peroxide. The epoxidation of trans-[1-2H]styrene by chloroperoxidase proceeds without detectable loss of stereochemistry, as does the epoxidation of styrene by rat liver cytochrome P-450, although much more phenylacetaldehyde is produced by chloroperoxidase than cytochrome P-450. Chloroperoxidase and cytochrome P-450 thus oxidize styrene by closely related oxygen-transfer mechanisms. Horseradish peroxidase does not oxidize styrene but does oxidize 2,4,6-trimethylphenol to 2,6-dimethyl-4-hydroxymethylphenol. The new hydroxyl group is partially labeled in incubations with H2(18)O but not H2(18)O2. The hydroxyl group thus appears to be introduced by addition of oxygen to the benzylic radical and water to the quinone methide intermediate but not by a cytochrome P-450-like oxene transfer mechanism. The results support the thesis that substrates primarily or exclusively react with the heme edge of horseradish peroxidase but are able to react with the ferryl oxygen of chloroperoxidase.  相似文献   

7.
A cytochrome P-450 capable of producing aldosterone from 11-deoxycorticosterone was purified from the zona glomerulosa of rat adrenal cortex. The enzyme was present in the mitochondria of the zona glomerulosa obtained from sodium-depleted and potassium-repleted rats but scarcely detected in those from untreated rats. It was undetectable in the mitochondria of other zones of the adrenal cortex from both the treated and untreated rats. The cytochrome P-450 was distinguishable from cytochrome P-45011 beta purified from the zonae fasciculata-reticularis mitochondria of the same rats. Molecular weights of the former and the latter cytochromes P-450, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 49,500 and 51,500, respectively, and their amino acid sequences up to the 20th residue from the N terminus were different from each other at least in one position. The former catalyzed the multihydroxylation reactions of 11-deoxycorticosterone giving corticosterone, 18-hydroxydeoxycorticosterone, 18-hydroxycorticosterone, and a significant amount of aldosterone as products. On the other hand, the latter catalyzed only 11 beta- and 18-hydroxylation reactions of the same substrate to yield either corticosterone or 18-hydroxydeoxycorticosterone. Thus, at least two forms of cytochrome P-450, which catalyze the 11 beta- and 18-hydroxylations of deoxycorticosterone, exist in rat adrenal cortex, but aldosterone synthesis is catalyzed only by the one present in the zona glomerulosa mitochondria.  相似文献   

8.
R Chiang  R Makino  W E Spomer  L P Hager 《Biochemistry》1975,14(19):4166-4171
The oxidation state of the two half-cystine residues in the native ferric form of chloroperoxidase and in the reduced ferrous chloroperoxidase has been examined in order to evaluate the role of sulfhydryl groups as determinants of P-450 type spectra. M?ssbauer and optical spectroscopy studies indicate that the ferrous forms of P-450cam and chloroperoxidase have very similar or identical heme environments. Model studies have suggested that sulfhydryl groups may function as axial ligands for developing P-450 character. However, chemical studies involving both sulfhydryl reagents and amperometric titrations show that neither the ferric nor the chemically produced ferrous forms of chloroperoxidase contain a sulfhydryl group. These results rule out the hypothesis that sulfhydryl groups are unique components for P-450 absorption characteristics. The optical and electron paramagnetic resonance (EPR) spectra of the nitric oxide complex of chloroperoxidase have been obtained and compared to those of myoglobin, hemoglobin, and cytochrome c and horseradish peroxidase. The EPR spectrum of the NO-ferrous chloroperoxidase complex, which is similar to that of cytochrome P-450cam, does not show the extra nitrogen hyperfine structure which appears to be characteristic of those hemoproteins which have a nitrogen atom as an axial heme ligand.  相似文献   

9.
A procedure for isolation of cytochrome oxidase and cytochrome P-450 from adrenocortical mitochondria was developed. The heme and copper contents, subunit composition, optical and EPR spectra for these enzymes were determined. The effects of pH, substrates and some inhibitors on the spectra of cytochrome P-450 were studied. It was found that cytochrome oxidase did not inhibit the reactions catalyzed by cytochrome P-450; cytochrome P-450 had no inhibiting effect on the oytochrome oxidase activity.  相似文献   

10.
The properties of the species-specific 6 alpha-hydroxylation of taurochenodeoxycholic acid were studied in subcellular fractions from pig liver. The hydroxylation was observed in microsomes but not in mitochondria. A partially purified cytochrome P-450 fraction in the presence of NADPH-cytochrome P-450 reductase, NADPH, and phospholipid catalyzed 6 alpha-hydroxylation of taurochenodeoxycholic acid at a 160-fold higher rate than the microsomes. This cytochrome P-450 fraction did not catalyze 6 alpha-hydroxylation of 5 beta-cholestane-3 alpha,7 alpha-diol or testosterone, nor did it catalyze 7 alpha-hydroxylation of cholesterol.  相似文献   

11.
Microsomes from rabbit small intestine mucosa were found to catalyze the hydroxylation of PGA1 in the presence of NADPH. The major product was identified as 20-hydroxy PGA1 by using high performance liquid chromatography and gas chromatography-mass spectrometry, and the minor product was assumed to be 19-hydroxy PGA1. The ratio of the former product to the latter was about 24.1. The specific PGA1 omega-hydroxylase activity of small intestine microsomes was comparable to that of liver microsomes, and was significantly higher than those of microsomes from other tissues such as kidney cortex and lung. Microsomes from rabbit colon mucosa also catalyzed the hydroxylation of PGA1 in the presence of NADPH, with the ratio of omega- to (omega-1)-hydroxy PGA1 formed being 33.0. The PGA1 hydroxylase activities of the microsomes from both small intestine and colon were inhibited markedly by carbon monoxide, indicating the participation of cytochrome P-450. A cytochrome P-450 was solubilized from small intestine microsomes, and purified to a specific content of 10.5 nmol of cytochrome P-450/mg of protein. This cytochrome hydroxylated PGA1 at the omega-position with a turnover rate of 38.2 nmol/min/nmol of cytochrome P-450 in the reconstituted system containing cytochrome P-450, NADPH-cytochrome P-450 reductase, cytochrome b5 and phosphatidylcholine. It is suggested that this cytochrome P-450 is specialized for the omega-hydroxylation of PGA1 in small intestine microsomes.  相似文献   

12.
NADPH-dependent oxidation of 1,3-butadiene by mouse liver microsomes or H2O2-dependent oxidation by chloroperoxidase produced both butadiene monoxide and crotonaldehyde; methyl vinyl ketone and 2,3- and 2,5- dihydrofuran were not detected. The crotonaldehyde to butadiene monoxide ratio remained constant over time in both the microsomal and the chloroperoxidase reactions; however, much more crotonaldehyde was produced by chloroperoxidase than microsomes; crotonaldehyde was not detected when reference samples of butadiene monoxide were used in control incubations containing NADPH and microsomes or H2O2 and chloroperoxidase. Moreover, incubations of 1,3-butadiene with horseradish peroxidase and H2O2, or microsomes and H2O2 or arachidonic acid did not result in the oxidation of 1,3-butadiene. In microsomes, metabolite formation was dependent on incubation time, NADPH, and protein concentrations and did not change when the 1,3-butadiene pressure was varied between 24 and 52 cm Hg. Inclusion of the cytochrome P450 inhibitor 1-benzylimidazole inhibited 1,3-butadiene metabolism, but inclusion of KCN, catalase, or superoxide dismutase had no effect. These results support the role of cytochrome P450 in 1,3-butadiene oxidation by mouse liver microsomes. The formation of crotonaldehyde but not methyl vinyl ketone by cytochrome P450 or chloroperoxidase indicates regioselectivity in the oxygen transfer from the hemoproteins to 1,3-butadiene. The intermediates formed may undergo either ring closure to form butadiene monoxide or a hydrogen shift to form 3-butenal which tautomerizes to produce crotonaldehyde. Evidence for this tautomerization was obtained by the finding that 3-buten-1-ol, an alternative precursor of 3-butenal, was oxidized to crotonaldehyde under incubation conditions similar to that used for 1,3-butadiene.  相似文献   

13.
The oxygenation of an aldehyde, 11-oxo-delta 8-tetrahydrocannabinol to a carboxylic acid, delta 8-tetrahydrocannabinol-11-oic acid was catalyzed by cytochrome P-450 MUT-2 purified from hepatic microsomes of male ddN mice. The oxygenation mechanism was confirmed by the incorporation of oxygen-18 from molecular oxygen into the carboxylic acid formed. An aldehyde form but not a hydrated form of 11-oxo-delta 8-tetrahydrocannabinol may be a substrate for the cytochrome P-450. The oxygenation of aldehyde catalyzed by cytochrome P-450 might be a common metabolic reaction in biological systems, and should be considered as an additional role of cytochrome P-450 in biotransformation of endogenous compounds and xenobiotics.  相似文献   

14.
Resonance Raman spectra of the heme protein chloroperoxidase in its native and reduced forms and complexed with various small ions are obtained by using laser excitation in the Soret region (350-450 nm). Additionally, Raman spectra of horseradish peroxidase, cytochrome P-450cam, and cytochrome c, taken with Soret excitation, are presented and discussed. The data support previous findings that indicate a strong analogy between the active site environments of chloroperoxidase and cytochrome P-450cam. The Raman spectra of native chloroperoxidase are found to be sensitive to temperature and imply that a high leads to low spin transition of the heme iron atom takes place as the temperature is lowered. Unusual peak positions are also found for native and reduced chloroperoxidase and indicate a weakening of porphyrin ring bond strengths due to the presence of a strongly electron-donating axial ligand. Enormous selective enhancements of vibrational modes at 1360 and 674 cm-1 are also observed in some low-spin ferrous forms of the enzyme. These vibrational frequencies are assigned to primary normal modes of expansion of the prophyrin macrocycle upon electronic excitation.  相似文献   

15.
A form of cytochrome P-450 which comigrates with cytochrome P-450LM4 (molecular weight, 55 000) on SDS-polyacrylamide gel was purified from liver microsomes of cholestyramine-treated rabbits. This form of cytochrome P-450 catalyzed the 7 alpha-hydroxylation of cholesterol with an activity of 37.5 pmol/min per nmol cytochrome P-450 in the reconstituted enzyme system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. The substrate specificity of this form of cytochrome P-450 was compared with cytochrome P-450LM4 isolated from phenobarbital- and beta-naphthoflavone-treated rabbit liver microsomes. The latter two isoenzymes do not catalyze 7 alpha-hydroxylation of cholesterol, but are more active in O-deethylation of 7-ethoxycoumarin and p-nitrophenetole. Ouchterlony double diffusion revealed cross-reactivity between anti-P-450LM4 (phenobarbital) IgG and cytochrome P-450 isolated from cholestyramine- or beta-naphthoflavone-treated rabbit liver microsomes. A two-dimensional iodinated tryptic peptide fingerprint indicated only minor structural differences among these three cytochrome P-450LM4 preparations.  相似文献   

16.
The mechanism by which 2-bromo-4'-nitroacetophenone (BrNAP) inactivates cytochrome P-450c, which involves alkylation primarily at Cys-292, is shown in the present study to involve an uncoupling of NADPH utilization and oxygen consumption from product formation. Alkylation of cytochrome P-450c with BrNAP markedly stimulated (approximately 30-fold) its rate of anaerobic reduction by NADPH-cytochrome P-450 reductase, as determined by stopped flow spectroscopy. This marked stimulation in reduction rate is highly unusual in that Cys-292 is apparently not part of the heme- or substrate-binding site, and its alkylation by BrNAP does not cause a low spin to high spin state transition in cytochrome P-450c. Under aerobic conditions the rapid oxidation of NADPH catalyzed by alkylated cytochrome P-450c was associated with rapid reduction of molecular oxygen to hydrogen peroxide via superoxide anion. The intermediacy of superoxide anion, formed by the one-electron reduction of molecular oxygen, established that alkylation of cytochrome P-450c with BrNAP uncouples the catalytic cycle prior to introduction of the second electron. The generation of superoxide anion by decomposition of the Fe2+ X O2 complex was consistent with the observations that, in contrast to native cytochrome P-450c, alkylated cytochrome P-450c failed to form a 430 nm absorbing chromophore during the metabolism of 7-ethoxycoumarin. Alkylation of cytochrome P-450c with BrNAP did not completely uncouple the catalytic cycle such that 5-20% of the catalytic activity remained for the alkylated cytochrome compared to the native protein depending on the substrate assayed. The uncoupling effect was, however, highly specific for cytochrome P-450c. Alkylation of nine other rat liver microsomal cytochrome P-450 isozymes with BrNAP caused little or no increase in hydrogen peroxide formation in the presence of NADPH-cytochrome P-450 reductase and NADPH.  相似文献   

17.
Hydrocarbon oxidations catalyzed by methane monooxygenase purified to high specific activity from the type II methanotroph Methylosinus trichosporium OB3b were compared to the same reactions catalyzed by methane monooxygenase from the type I methanotroph Methylococcus capsulatus Bath and liver microsomal cytochrome P-450. The two methane monooxygenases produced nearly identical product distributions, in accord with physical studies of the enzymes which have shown them to be very similar. The products obtained from the oxidation of a series of deuterated substrates by the M. trichosporium methane monooxygenase were very similar to those reported for the same reaction catalyzed by liver microsomal cytochrome P-450, suggesting that the enzymes use similar mechanisms. However, differences in the product distributions and other aspects of the reactions indicated the mechanisms are not identical. Methane monooxygenase epoxidized propene in D2O and d6-propene in H2O without exchange of substrate protons or deuterons with solvent, in contrast to cytochrome P-450 (Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L. (1986) J. Am. Chem. Soc. 108, 3837-3838), suggesting that the mechanism of epoxidation of olefins by methane monooxygenase differs at least in part from that of cytochrome P-450. Hydroxylation of alkanes by methane monooxygenase revealed close similarities to hydroxylations by cytochrome P-450. Allylic hydroxylation of 3,3,6,6-d4-cyclohexene occurred with approximately 20% allylic rearrangement in the case of methane monooxygenase, whereas 33% was reported for this reaction catalyzed by cytochrome P-450 (Groves, J. T., and Subramanian, D. V. (1984) J. Am. Chem. Soc. 106, 2177-2181). Similarly, hydroxylation of exo,exo,exo,exo-2,3,5,6-d4-norbornane by methane monooxygenase occurred with epimerization, but to a lesser extent than reported for cytochrome P-450 (Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J. (1978) Biochem. Biophys. Res. Commun. 81, 154-160). A large intramolecular isotope effect, kH,exo/kD,exo greater than or equal to 5.5, was calculated for this reaction. However, the intermolecular kinetic isotope effect on Vm for methane oxidation was small, suggesting that steps other than C-H bond breakage were rate limiting in the overall enzymatic reaction. Similar isotope effects have been observed for cytochrome P-450. These observations indicate a stepwise mechanism of hydroxylation for methane monooxygenase analogous to that proposed for cytochrome P-450.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Pig kidney mitochondria were found to catalyze the formation of 26-hydroxycholesterol, an inhibitor of cholesterol biosynthesis. The cholesterol 26-hydroxylase was purified 600-fold. It was present in a mitochondrial enzyme fraction enriched in cytochrome P-450. The cytochrome P-450 fraction required NADPH, mitochondrial ferredoxin and ferredoxin reductase for 26-hydroxylase activity. The mitochondria and the purified 26-hydroxylase preparation also catalyzed 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, and intermediate in cholic acid biosynthesis, and of 25-hydroxyvitamin D3. The role of extra-hepatic formation of 26-hydroxycholesterol is discussed.  相似文献   

19.
The mechanism of cytochrome P-450 catalyzed steroid hydroxylations in rat liver microsomes has been investigated by employing derivatives of iodosylbenzene as oxygen donors. The model steroid substrate androstenedione which was hydroxylated in positions 7 alpha, 6 beta, and 16 alpha was used in reactions supported by NADPH, iodosylbenzene, and iodosylbenzene derivatives. Evidence for cytochrome P-450 involvement in iodosylbenzene-sustained androstenedione hydroxylation included inhibition by substrates and modifiers of cytochrome P-450. The most efficient oxygen donors were (diacetoxyiodo)-2-nitrobenzene greater than (diacetoxyiodo)-2-chlorobenzene greater than 2-nitroiodosylbenzene greater than (dinitratoiodo)-2-nitrobenzene greater than (diacetoxyiodo)benzene greater than (diacetoxyiodo)-2-methoxybenzene greater than 4-(diacetoxyiodo)toluene greater than iodosylbenzene. The capacity of the oxidation agents to serve as oxygen donors in cytochrome P-450 dependent steroid hydroxylation is probably dependent upon several factors such as the tendency of iodosyl compounds to associate, which decreases coordination with the heme iron, the presence of bulky substituents in the 2 position (decreases association), and the presence of electron-withdrawing substituents (tends to decrease coordination with the heme iron). The rates of 7 alpha, 6 beta, and i6 alpha hydroxylation of androstenedione catalyzed by (diacetoxyiodo)-2-nitrobenzene were 108-, 130-, and 167-fold higher, respectively, than the rates of the NADPH-supported reactions. These results strongly suggest that the rate-limiting step in NADPH-sustained cytochrome P-450 catalyzed reactions is the rate of reduction of cytochrome P-450.  相似文献   

20.
In the presence of NADPH and O2, NADPH-cytochrome P-450 reductase was found to activate Fe(III)-bleomycin A2 for DNA strand scission. Consistent with observations made previously when cccDNA was incubated in the presence of bleomycin and Fe(II) + O2 or Fe(III) + C6H5IO, degradation of DNA by NADPH-cytochrome P-450 reductase activated Fe(III)-bleomycin A2 produced both single- and double-strand nicks with concomitant formation of malondialdehyde (precursors). Cu(II)-bleomycin A2 also produced nicks in SV40 DNA following activation with NADPH-cytochrome P-450 reductase, but these were not accompanied by the formation of malondialdehyde (precursors). These findings confirm the activity of copper bleomycin in DNA strand scission and indicate that it degrades DNA in a fashion that differs mechanistically from that of iron bleomycin. The present findings also-establish the most facile pathways for enzymatic activation of Fe(III)-bleomycin and Cu(II)-bleomycin, provide data concerning the nature of the activated metallobleomycins, and extend the analogy between the chemistry of cytochrome P-450 and bleomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号