首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
U r?zně starých list? v listové r??ici 90 a? 110 denních rostlin Nicotiana sanderae hort. byly sledovány rozdály v intensitě ?isté fotosynthesy a v obsahu chlorofylu (a + b). Ke stanovení intensity fotosynthesy bylo pou?ito dvou odli?ných metod, a to váhového stanovení p?ír?stku su?iny podle Barto?e, KubÍna a ?et-lÍka (1960) a gazometrického stanovení infra?erveným analyzátorem CO2. Nejvy??í intensitu fotosynthesy i nejvy??í obsah chlorofylu (vzhledem k plo?e listové) mají mladé, ale ji? dob?e rozvinuté listy, tj. t?etí a? ?tvrté od vrcholu (prvním listem se rozumí list o plo?e asi 20 cm2). Tyto listy nazýváme ?fotosyntheticky dospělými“. Listy nejmlad?í a zejména pak listy star?í mají intensitu fotosynthesy i obsah chlorofylu ni??í; u nejstar?ích list? je intensita fotosynthesy prakticky nulová. Intensita fotosynthesy i obsah chlorofylu se během vývoje mění: jejich momentální rozdíly u list? v genetické spirále jsou z?ejmě shodné s jejich změnami v ontogenesi listu. Pokles intensity fotosynthesy p?i stárnutí list? je rychlej?í ne? pokles obsahu chlorofylu. P?i ur?itém obsahu chlorofylu (tj. asi 2,25 a? 2,45 mg/dm2) klesá intensita ?isté fotosynthesy k nule. Intensita fotosynthesy je v lineárním vztahu k mno?ství chlorofylu (p?i p?epo?tu na plo?nou jednotku), a to nezávisle na poloze listu v genetické spirále. Obě pou?ité metody ke stanovení intensity fotosynthesy poskytly obdobné výsledky.  相似文献   

2.
Po?adí intensity, s jakou prodýchávají pylové lá?ky testované cukry z 0,3 M roztok?, je sacharosa> glukosa> invertní cukr> fruktosa. Stejné po?adí je zaehováno na cukr-agarových mediích s výjimkou prvých dvou hodin inkubace, během kterých jsou sacharosa, glukosa a fruktosa prodýchávány témě? stejnou rychlostí. Během této doby se v prost?edí fruktosy, stejně jako v kontrole bez cukru, nevytvo?ily pylové lá?ky, zatím za p?itomnosti sacharosy dosahovaly délky a? 450 µ. Jestli?e byla pou?ita pro radioaktivní cukry jako nosi? sacharosa, byla fruktosa-14C prodýchávána a? 12krát, glukosa-14C a? 6krât intensivnëji neá sacharosa-14C. Za pou?ití nosi?e sacharosa+glukosa ?i sacharosa+fruktosa (molárni poměry 1:1), prodýchávaji pylové lácky sacharosu-14C pomaleji ne? p?íslu?ny monosaeharid a rovně? pomaleji ne? z prost?edí samotnéé sacharosy. Jestli?e byla nosi?em sacharosy-14C glukosa nebo fruktosa, byla (v některých ?asových úsecíeh pokusu) produkce14CO2 pylovými láckami několik desítek procent mohutněj?í ne? za pou?ití nosi?e sacharosového. Z prost?edí invertního cukru je p?ednostně prodýchäväna fruktosa. Je tedy kapacita pylových enzymových systém? za?leňujících sledované cukry do jejich dýchacích cest pro fruktosu>glukosu> sacharosu, co? je opa?né po?adí ne? platí pro intensitu r?stového ú?inku těchto cukr? a ne? jaké bylo zji?těno pro rychlost jejich prodýchávání, jestli?e nebyly navzájem kombinovány. Ve specifickém r?stovém efektu sacharosy nem??e tedy být primárním faktorem ani rychlost její absorpce, ani intensita jejího prodýcháváni. Rychlá utilisace samotné sacharosy je následkem intensivněj?ího r?stu v jejím prost?edí. Získané výsledky dále ukazují, ?e sacharosa je vyu?ívána p?edev?ím cestou její inverse, p?i ?em? je p?ednostně prodýchávána fruktosová slo?ka.  相似文献   

3.
Auto?i sledovali infra?ervenými analyzátory CO2 a H2O ?istou fotosyntézu, dýchání a transpiraci rostlin a list? kuku?ice v konstantních podmínkách. Mezi t?emi sledovanými odr?dami—Schindelmeiser, Siloma a VIR 25—nebyly zji?těny pr?kazné rozdíly v ?isté fotosyntéze, i kdy? se jednotlivé odr?dy díky r?zně dlouhé vegeta?ní době zretelně li?í ve výnosu; rozptyl hodnot mezi jednotlivými rostlinami jedné odr?dy byl p?ibli?ně 25%. P?i témě? stejně velkém rozptylu mezi rostlinami jedné odr?dy byla zji?těna pr?kazně vy?? intenzita transpirace u VIR 25 ve srovnánís ostatními dvěma odr?dami. Nejvy??í intenzitu ?isté fotosyntézy měly listy nejblí?e od palice (tj. 4. a? 5. list). P?íjem CO2 vyjád?ený na plochu a hodinu byl r?zný u r?zných úsek? listu; ve st?ední ?ásti listu byl pr?kazně vy??í ve srovnání s bazální ?ástí. P?íjem CO2 byl v pozitivní korelacis minerální vý?ivou. Nebyly zji?těny rozdíly v p?íjmu CO2 u rostlin bez palic as nimi. Rostliny bez palic nemohou produkované asimiláty (sacharózu) skladovat; ty proto zaplavují celou rostlinu az velké ?ásti se v noci prodýchávají. Efektivní výtě?ek su?iny u těchto rostlin bez palic dosahuje jen 70% výtě?ku rostlin s palicemi.  相似文献   

4.
Ji? d?íve zji?těné (Slavík 1959a) rozlo?ení hodnot osmotického tlaku buně?né ?távy na plo?e listové ?epele dvoudělo?ného typu (apex >base, okraj > centrální ?ást), nezávislé na vodní bilanci a nezměněné i p?i nulovém deficitu difusního tlaku (DPD)in situ bylo doplnéno dal?ím sledováním fysiologické heterogenity listové ?epele u dospělých list?Nicotiana sanderae hort., p?edev?ím hlavních indikátor? vodního provozu a výměny CO2. Intensita transpirace s intaktního povrehu list?, vypo?tená z vá?kových mě?ení na discích, vyseknutých z ?epele, je v apikální ?ásti o 50 a? 70%, ni??í ne? na basi. Rovně? p?irozený trvalý vodní deficit, stanovený diskovou metodou (?atský 1960), byl v apikální ?ásti o 10% ni??í ne? na basi. Hustota pr?duch? byla jak uNicotiana sanderae, tak u dal?í pokusné rostliny u cukrovky v apikální ?ásti pr?měrně o 40% ni??í, zatím co velikost pr?duch? byla v apikální ?ásti naopak pr?měrně o 30% vět?í. Relativní index plochy pr?duchových skulin na plochu ?epele (po?et × ?tverec délky na svrchní plus spodní straně) se na obou místěch pr?kazně neli?il. Intensita fotosynthesy (na plochu), mě?ená gazometricky infra?erveným analysátorem, byla p?i plném nasycení pletiva vodou v apikální ?ásti pr?kazně o 17% ni??í ne? v ?ásti basální, a?koliv obsah chlorofylu na plochu je v tlust?í, apikální ?ásti vět?í. Rovně? intensita dýchání, manometricky mě?ená jako QO2, byla v apikální ?ásti pr?kazně ni??í, a to jak v p?epo?tu na su?inu (o 12%), tak na plochu. Podobné, av?ak podstatně men?í rozdíly byly zji?těny také mezi okrajem a centrální ?ástí ?epele. Fysiologická heterogenita listové ?epele je kauzálně zalo?ena na r?zné hydrata?ní úrovni, tak?e studium aktivity r?zných fysiologických proces?, na r?zných místech ?epele je vhodné pro sledování jejich vztahu k r?zné úrovni hydratace.  相似文献   

5.
Natriumfluorid, monojodacetát a malonát brzdí, pop?ípadě stimulují, dýchání ko?en? p?enice pěstované 2 a? 10 dní v roztoku humátu sodného (100 mg/l) silněji, ne? dýchání ko?en? rostlin pěstovaných ve vodě. Obdobně p?sobí natriumfluorid na dýchání list?. Poměr radioaktivit C14O2 uvolněného z glukosy zna?ené v poloze 1 nebo 6 (C6/C1) je pr?kazně zvý?en u ko?en?, nikoli v?ak u list?. Změna tohoto poměru je doprovázena zmen?ením celkové radioaktivity C14O2 uvolněného ko?eny rostlin ovlivněnými humátem z glukesy specificky i totálně zna?ené. Endogenní respirace (QO2) ko?en? je p?sobením humátu zesílena o 5–30 %, intensita respirace list? z?stává na stejné úrovni. R?st ko?en? do délky je v prost?edí s humátem intensivněj?í o 20–80 %, r?st list? o 5–15%. Uvedená zji?tění vedou k závěru, ?e v ko?enech rostlin pěstovaných v roztoku humátu vzr?stá podíl glykolysy v respira?ním metabolismu.  相似文献   

6.
V práci byl sledován vliv p?edplodin lnu, ?ita, máku a ho??ice na následné plodiny tého? nebo jiného druhu p?i bezprost?edním vysévání po sobě a p?i vysévání v r?zně dlouhých ?asových intervalech s odstupňovanou délkou odpo?ívání zeminy. Pokusy byly prováděny v nádobách naplněných kompostovou zeminou, které byly umístěny na pokusné zahradě. Byl hodnocen r?st p?edplodiny a následné plodiny stanovením su?iny nadzemních ?ástí a ko?en?. Během r?stu následných rostlin byly odebírány vzorky zemin, v nich? byl stanoven obsah fyziologicky p?istupného dusíku, fostoru a draslíku. V?echny ?ty?i pou?ité p?edplodiny p?sobily pr?kazné změny v r?stu následných rostlin. Len a mák pěstované jako p?edplodiny p?sobily na následné rostliny lnu a cukrovky prost?ednictvím p?dních autopatických ?i allelopatických faktor?. Ú?inek ?ita jako p?edplodiny na ?ito a ho??ice na je?men byl méně výrazný. Z výsledk? se nedá v posledních dvou p?ípadech p?ímo usuzovat na p?ítomnost autopatických nebo allelopatických faktor?. P?i bezprost?ední kultivaci následných rostlin v zemině po p?edplodině bez odpo?ívání byla zji?těna jen inhibice r?stu. Pokusy s odstupňovanou délkou odpo?ívání zeminy dávají mo?nost zachytit celou ?kálu r?stových změn následných rostlin od inhibice ke stimulaci. Ú?inek p?edplodiny na následnou plodinu se zna?ně měnil s délkou odpo?ívání zeminy po p?edplodině. Změny r?stu následných rostlin nekorelovaly—kromě pokusu s ?item a ?áste?ně s ho??icí—se změnami v obsahu sledovaných ?ivin, ani s mno?stvím narostlé p?edplodiny.  相似文献   

7.
Byla sledována absorpce listy a následající rozmístění sodíku, fosforu, chloru, vápníku, zinku u jednoletých zako?eněných ?ízk?Forsythia intermedia ZABEL, A, ko?enová absorpce fosforu uTaxus cuspidata SIEB. and Zucc. Podíl ?ivin, který byl p?emístěn z list?, na ně? byl aplikován, byl pou?it jako kritérium jejich pohyblivosti. Z toho hlediska bylo zji?těno, ?e sodík a chlor jsou velmi pohyblivé, vápník nepohyblivý a zinek mírně pohyblivý. Méně ne? 1 procento fosforu, který byl uTaxus cuspidata aplikován jak na rostliny aktivně rostoueí, tak na rostliny v ?áste?ně kldovém stadiu, se objevilo v ko?enech po dvanácti dnech od aplikace. ?est procent z celkového fosforu, zji?těného po 12 dnech v nadzemní ?ásti, pocházelo z jediné dávky ve vodě rozpu?těného fosfore?ného hnojiva p?idané ho do p?dy, a?koliv bylo z něho absorbováno méně ne? 0,5 % fosforu.  相似文献   

8.
U 100 a? 120denných rostlin krmné kapusty a ?epky byly sledovány rozdíly v dynamice vzniku a dal?ího vývoje momentálního vodního deficitu (VD) u r?zně starých list?. VD byl stanovován ter?íkovou metodou s extrapolaí dosycovací k?ivky do po?átku (?atský 1962b). U list?, oddělených od rostliny a vadnoucích bez p?ísunu vody, je VD nejvy??í u mladých a nejni??í u starých list?, tedy v podstatě odpovídá rozdíl?m v intensité transpirace. P?i od?íznutí celé rostliny vadnou listy r?zného stá?í v podstatě stejnou intensitou. V pozděj?ích fázích vadnutí byly v některých pokusech stanoveny mírně vy??í hodnoty VD starých list?. P?i pomalém vadnutí rostliny in situ, indukovaném sni?ováním p?dní vlhkosti, byla po?ínaje st?edními hodnotami VD, tj. pr?měrně od 8 a? 20 % stanovena velmi z?etelná preference mladých list? v zásobování vodou. P?i celkovém nedostatku vody v rostlině nejprve silně vadnou a později odumírají starí a dospělé listy; VD mladých list? se dlouho udr?uje na poměrně nízkých hodnotách. Tento pr?běh vadnutí rostliny in situ byl stanoven jak p?ímým mě?ením VD, tak i nep?ímo stanovením poklesu procentuálního obsahu vody v listech. Na zji?těné preferenci mladých list? v zásobování vodou se uplatňuje i translokace vody do mladých list? z vadnoucích list? star?ích.  相似文献   

9.
Aplikací 1 ppm zeatinu se zvý?í rychlost dýchání (mě?eno Warburgovou metodou) protoplast? z mesofylu list?Petunia hybrida po 4 h asi o 50%; pak následuje prudký pokles. Zatímeo rychlost dýchání u kontrolních rostlin stoupá po 5 a? 6 h, 1 ppm zeatinu má silný inhibi?ní ú?inek. P?i dýchání u kontrolních rostlin stoupá po 5 a? 6 h, 1 ppm zeatinu má silný inhibi?ní ú?inek. P?i pou?ití 0.1 ppm zeatinu je vzestup rychlosti, dýchání mnohem pomalej?í a po 7 h je o 30% vy??í ne? u kontrolních rostlin. Kyselina abscisová (10 ppm) sni?uje rychlost dýchání tak, ?e po 5 h je rychlost dýchání o polovinu ni??í ne? v kontrolní variantě. Později následuje vzestup, zp?sobený patrně vlivem kyseliny abscisové podporující stárnutí. Rychlost fotosynthesy protoplast? mesofylu mě?ená pomocí fixace14CO2 klesá se stárnutím preparátu. Protoplasty vystavené p?sobení zeatinu během 1 a? 3 h ukazovaly zvý?ení rychlosti fotosynthesy. P?i aplikaci 0.1 ppm zeatinu rychlost fixace14CO2 je tím vět?í, ?ím déle mohl hormon p?sobit. P?i aplikaci 1 ppm zeatinu byla získána typická optimální k?ivka podobná k?ivce pro dýchání. Tyto optimální k?ivky prokazují inhibi?ní ú?inek zeatinu na dýchání a fotosynthesu.  相似文献   

10.
Dýchání pylu jabloně v r?znych cukerných substrátech a otázka významu saeharosy pro r?st pylových lá?ek Intensita dýchání klí?ícího pylu jabloně, sledovaná podle spot?eby O2, je podstatně odli?ná v roztocíoh sacharosy, glukosy, invertu a fruktosy. Nejvy??í je v prost?edí sacharosy, nejni??í v roztoku fruktosy. Sacharo?a se jako medium ?i substrát pro dýchání pylu nedá zcela nahradit glukosou, fruktosou ?i invertním cukrem nejen v po?áte?ních fázích klí?ení, nýbr? ani během pozděj?ího r?stu lá?ek. Spotěba O2 pylovými lá?kami se v roztoku sacharosy, stejně jako jejich r?st, za?íná sni?ovat p?ibli?ně po 6 hodinách od vysetí pylu. Jestlize se po 5 hodiná ch kultivace vymění kultiva?ní roztok ?erstvým roztokem sacharosy, pak se během dal?ích 4 hodin intensita dýchání prakticky nemění. Z uvedených skute?ností vyplývá, ?e rychlá inverse sacharosy pylovými lá?kami je hlavní p?í?inou zpomalování jejich r?stu a dychání v sacharosovém prost?edí.  相似文献   

11.
D?ívěj?í práci, v ní? jsme hodnotili pr?běh vývoje podle fenologie a podle vzniku abnormit, jsme nyní doplnili mě?ením délky list?. Pr?běh vývoje jsme ovlivňovali fotoperiodiekou inhibicí v r?zné fázi vývoje vzrostného vrcholu. Ovlivnění pr?běhu vývoje se projevilo změnou délky pochvy a ?epele listu. ?epel byla ovlivněna více ne? pochva. V ?adě variant s r?zným za?átkem fotoperiodické inhibice do?lo k prodlou?ení nebo ke zkrácení pochvy a ?epele horních t?í list? proti p?íslu?ným list?m kontroly. Ke zkrácení do?lo u list?, které se vyvinuly nad obvyklý po?et z p?vodních základ? brakteí. Bylo to u variant s velmi ranou inhibicí. Varianty s pozděj?í inhibicí mají jednak abnormálně redukované listy so zakrnělými ú?labními klásky, jednak prodlou?ené listy, které svojí délkou p?ipomínají ontogeneticky mlad?í, ni??í listy. Ukázalo se, ?e i u tak obtí?ného materiálu jako je p?enice m??e být morfologie list? spolehlivým záznamem pr?běhu vývoje.  相似文献   

12.
V p?edlo?ené práci je sledován ú?inek humusových látek aplikovaných na listy cukrovky post?ikem. Sou?asně je ově?ována vhodnost kombinace humusových látek s minerálními ?ivinami. Ukazuje se, ?e post?ik humusovými látkami zvlá?tě v kombinaci s minerálními ?ivinami p?íznivě ovlivňuje r?st cukrovky, zvy?uje váhu list? i ko?ene a celkové mno?ství cukru v ko?eni. Ú?inok post?iku humusovými látkami je vět?í u rostlin pěstovaných ve vodní kultu?e a st?íkaných ?ivným roztokem s kompletněj?ím zastoupením minerálních prvk?. Humusové látky p?i aplikaci na list vyvolávají podobné změny v anatomické stavbě pletiv a orgán?, jako p?i jejich aplikaci do ?ivného roztoku ke ko?en?m. Humusové látky zvlá?tě v kombinaci s minerálním roztokem zvy?ují v listech cukrovky mno?ství chlorofylu a zvy?ují intezitu fotosyntézy. Post?ik humusovými látkami zvy?uje sou?asně transpiraci cukrovky.  相似文献   

13.
Je popsáno laboratorní gazometrické za?ízení pro stanovení intensity fotosynthesy v regulovaných podmínkách, umo?ňující difereněním zapojením infra?erveného analysátoru dosáhnout vysoké p?esnosti p?i stanovení rozdílu v koncentraci CO2 mezi kontrolnín vzduchem a vzduchem ochuzeným o asimilovaný CO2. Infra?ervený analysátor je zapojen tak, ?e jednou trubicí trvale prochází vzduch kontrolní a druhou “ochuzený” vzduch pokusný, tak?e výchylka registrujícího p?ístroje, kterou je mo?no zna?ně zesílit, odpovídá p?ímo absolutní hodnotě ochuzení, tedy p?i známém pr?toku p?ímo intensitě fotosynthesy. Tak je pr?měrná chyba stanovení intensity fotosynthesy vyjád?ena chybou stanovení koncentrace CO2 p?ístrojem p?i pou?itém zesílení v procentech diference a nikoliv v procentech několikánásobně vy??í absolutní koncentrace CO2, jak je tomu p?i absolutním zapojení. P?ípadné kolísání koncentrace CO2 v kontrolním vzduchu je registrováno druhým infra?erveným analysátorem, který je zapojen normálně, tj. absolutně. K exposici rostliny běhern pokusu je pou?íváno jednoduché klimatisované komory s regulovanou teplotou (±0,2° C) a vlhkostí (±2 a? 5% rel. vlhkosti) vzduchu s vysokou regulovancu stabilní intensitou osvětlení (a? do cca 3,2. 106 erg. cm?2. sec?1) a s mo?ností zvy?ovat koncentraci CO2 vevzduchu.  相似文献   

14.
Ve fotoperiodických pokusech s jarní p?enicí Niva jsme sledovali pr?běh fotoperiodické citlivosti a umístění období fotoperiodieké reakce v ontogenesi rostlin. Nepoda?ilo se nám u této dlouhodenní rostliny najít takové období, během něho? by zkrácený den v?bec neměl vliv na rychlost vývoje. Některé údaje v?ak nazna?ují, ?e m??eme vymezit období zvý?ené fotoperiodieké citlivosti, které by odpovídalo období fotoperiodieké reakce u krátkodenních rostlin. Výsledky nasvěd?ují rovně? tomu, ?e toto období nekon?í náhle, nýbr? postupně p?echází v následující období, kdy délka dne p?sobí na rychlost vývoje ji? jen prost?ednietvím fotosynthesy. Tento vliv je dob?e; patrný p?i pou?ití takových indikátor? jako je vývoj vzrostného vrcholu a metání. Existenci p?echodného období na konci období zvý?ené fotoperiodieké citlivosti a jeho souvislosti s fází vzrostného vrcholu od zakládání klísk? do zakládání ty?inek je t?eba ově?it dlouhodobím pokusem v p?ísně regulovatelních podmínkách. Z metodik sledování pr?běhu fotoperiodieké citlivosti se u na?eho pokusného materiálu nejlépe osvěd?ilo metání, které poskytlo k?ivky s ur?itými, více nebo méně z?etelnými zloniy, a také sledování abnormit (p?i klasickém uspo?ádání pokusu), které indikují naru?ení vztahu mezi r?stem a vývojem. Orienta?ní údaje poskytlo rovně? mě?ení délky rostlin u klasického uspo?ádáni pokusu. Nejméně spolehlivé byly v na?ich pokusech analysy vývojového stavu vzrostného vrcholu.  相似文献   

15.
P?í stimulaci dýchání list? p?enice fluoridem p?i 100 a? 200 p. p. m. fluoru v suché tkáni se zvy?uje poměr radioaktivit14CO2 uvolněného z glukosy-6-14C a z glukosy-l-14C (C6/C1) hlavně zvý?ením výdeje 6-14CO2, co? svěd?í o aktivaci glykolytického systému. Absolutní hodnoty radioaktivity14CO2 jsou p?sobením fluoridu sní?eny v d?sledku brzdění transportu glukosy do list?.  相似文献   

16.
V práci se popisuje zp?sob pou?ití metody váhového stanovení intensity fotosynthesy vzork? listového pletiva i pro rostliny s úzkými listovými ?epelemi (nap?. Festuca, Stipa aj.). Vzorek listového pletiva tvo?í zde piocha ráme?ku, který je vyplněn těsně vedle sebe le?ícími listovými úseky. Listové úseky dlouhé 26 mm se vysekávají z list? speciálním razidlem a jejich po?et ve vzorku je nutno pro ka?dý rostlinný druh p?edem experimentálně stanovit. V souvislosti s touto otázkou auto?i popisují závislosti hodnot intensity fotosynthesy na mno?ství úsek? ve vzorku. P?esnost nep?ímého stanovení su?iny kontrolními vzorky je p?i deseti stanoveních a pětiprocentní pravdépodobnosti maximálné ± 1 %, co? dává mo?nost p?i p?edpokládaném p?ír?stku su?iny o 10% mě?it intensitu fotosynthesy s p? esností na ±10%.  相似文献   

17.
Byly zji??ovány změny osmotického potenciálu (osmotického tlaku) buně?né ??ávy (vylisované z listových pletiv usmrcených p?i 100°C) p?i pasivní vodní bilanci (vadnutí) ?ástí ?epele v závislosti na zvět?ujícím se vodním deficitu (na ztrátě vody). Teoreticky by toti? bylo mo?no p?edpokládat, ?e voda vydaná p?i pasivní vodní bilanci pochází rovnoměrně z ve?keré vody buně?né, tedy také poměrně z podílu, obsa?eného v buně?né ??ávě. V tom p?ípadě by se buně?ná ??áva koncentrovala úměrně vznikajícímu deficitu. V naprosté vět?ině pozorovaných p?ípad? stoupal v?ak osmotický tlak (klesal osmotický potenciál) strměji ne? teoreticky odpovídá sou?asné ztrátě vody. Ze zji?těných rozdíl? mezi zmíněným teoretickým pr?během a mezi nalezenými hodmotami byl vypo?ítán odhad percentuálního podílu ?mobilní” vody v buňce, tj. toho podílu, kterého se v?dy bezprost?edně týkají změny obsahu vody v buňce. Tento podíl ?mobilní” vody byl u dospělých list? kolem 70 a? 80%. Velikost podílu ?mobilní” vody závisela na rychlosti vzniku vodního deficitu: P?i rychlém vadnutí byl u dospělých list? zji?těn men?í podíl ne? p?i vadnutí pomalém. To svěděí o tom, ?e ?mobilní” podíl buně?né vody je vymezován podle vodní bilance buňky dynamickou rovnováhu intracelulárních difusních proud? vody podle gradient? difusního tlaku vody mezi jednotlivými podíly buně?né vody, je? jsou ur?eny r?znou vazbou (?vázaná” voda) i r?znou lokalisací v buňce.  相似文献   

18.
V souvislosti s d?ívěj?imi údaji (Lu?tinec a Krektjle 1959, Lu?tinec, Krekule a PokornÁ 1960) o silném inhibi?ním ú?inku fluoridu na dychání rostlin pěstovaných v roztoku kyseliny giberelové byl pomocí specificky zna?ené glukosy a respira?ních inhibitor? zji?tován vztah krátko- i dlouhodobého p?sobení kyseliny giberelové k poměru mezi podíly glykolytického a pentosofosfátového odbourání v respiraci list? p?enice. V souhlase s výsledky Fanga a spol. (1960) byIo zji?těno, ?e kyselina giberelová v koncentracích 2 a? 80 mg/l neovlivńuje během několikahodinového p?sobení na roz?ezané listy p?enice poměr radioaktivit14CO2 uvolněného z glukosy-6-14C a -1-14C (C6/C1) ani nemění v koncentraci 10 mg/l stupeń inhibice dýchání fluoridem, monojodacetátem a malonátem a spot?ebu kyslíku. Výdej14CO2 z glukosy-l-14C a -6-14C kyselina giberelová sni?uje v lineární závislosti na pou?itých koncentracích. U rostlin pěstovaných v roztoku kyseliny giberelové (10–20 mg/l) se rychleji sni?uje poměr C6C1 i absolutní hodnoty radioaktivity během několika dní od vyklí?ení, ne? u rostlin pěstovaných ve vodě. To svěd?í o rychlej?ím zvět?ování podílu pentosového cyklu v respiraci pokusných rostlin. Fluorid brzdí p?i stejném nebo men?ím obsahu ve tkáni dýchání list? rostlin pěstovaných v roztoku kyseliny giberelové silněji ne? dýchání rostlin pěstovaných ve vodě, zatimco ûcinek monojodacetátu a malonátu je u stejně starých rostlin (4 dny) obou variant stejný. O mo?ných p?í?inách tohoto jevu bylo diskutováno.  相似文献   

19.
P?i vývoji listu p?enice se zmen?uje stupeň inhibice dýchání fluoridem, monojodacetátem a malonátem a poměr mezi radioaktivitami14CO2 uvolněného z glukosy-6-14C a glukosy-l-14C (C6/C1), co? svěd?í o zvět?ování podílu pentosovího cyklu v celkové respiraci. Tato změna v?ak neni zp?sobena absolutním zvět?ením aktivity pentosového eyklu u star?ích list?, nýbr? p?edev?ím poklesem aktivity glykolytického systému. Naproti tomu u list? oddělených od obilky se pri sní?ení vlhkosti atmosféry méní poměr mezi dýchacími cestami v d?sledku aktivace pentosového cyklu. Na základě disproporce mezi procentem glykolytického podílu respirace vypo?tenym ze sní?ení poměru C6/C1 p?i inhibici dýchání fluoridem a procentem inhibice dý chání fluoridem bylo diskutováno o mo?ných p?íoinách vysokých poměr? C6/C1 u mladých list?, u nich? byly v některých p?ípadech zji?těny hodnoty těchto poměr? dokonce vy??í ne? jedna.  相似文献   

20.
V práci jsem zji?tovala, zda podmínky kultívace ?as ovlivńují ?espira?ní metabolismus. Rasy Chlorella pyrenoidosa (82), Scenedesmus obliquus (125) a Euglena gracilis (259) byly pěstovány ve t?epané a stojaté kultu?e. T?epáním kultur je podstatně ovlivněn respira?ní metabolismus ?as. T?épané kultury mají na rozdíl od stojatých sní?enou spot?ebu O2 a vět?inou odli?né RQ. Je mo?né, ?e zji?těné rozdíly jsou podmíněny zrychleným vývojem a stárnutím t?epaných kultur. Je tedy t?epání jako zp?sob kultivace významným faktorem, který je nutno respektovat p?i pěstování experimentálního materiálu. Namě?ené hodnoty respira?ního kvocientu okolo 1,3 svěd?í pro to, ?e anaerobní glykolytické pochody mohou probíhat i za dokonalého p?ístupu vzduchu do media. Kultura Scenedesmus obliquus (125) má pravděpodobně málo p?izp?sobivý metabolismus a na změny prost?edí nereaguje tak citlivě jako Euglena gracilis nebo Chlorella pyrenoidosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号