首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although HEF1 has a well-defined role in integrin-dependent attachment signalling at focal adhesions, it relocalizes to the spindle asters at mitosis. We report here that overexpression of HEF1 causes an increase in centrosome numbers and multipolar spindles, resembling defects induced by manipulation of the mitotic regulatory kinase Aurora-A (AurA). We show that HEF1 associates with and controls activation of AurA. We also show that HEF1 depletion causes centrosomal splitting, mono-astral spindles and hyperactivation of Nek2, implying additional action earlier in the cell cycle. These results provide new insight into the role of an adhesion protein in coordination of cell attachment and division.  相似文献   

2.
The activation of cdc2/cyclin B is the trigger for entry into mitosis. The mechanism of cdc2/cyclin B activation is complex, but the final step is the dephosphorylation of the Thr14 and Tyr15 residues on the cdc2 subunit, catalyzed by a member of the Cdc25 family of phosphatases. Cdc2/cyclin B1 accumulates at the centrosome in late G2 phase and has been implicated in the conversion of the centrosome from an interphase to a mitotic microtubule organizing center. Here we demonstrate biochemically that cdc2/cyclin B1 accumulates at the centrosome in late G2 as the inactive, phosphotyrosine 15 form and that the centrosomal cdc2/cyclin B1 can be activated in vitro by recombinant cdc25B. We provide evidence that a portion of the cdc2/cyclin B1 translocated into the nucleus in prophase is the inactive tyrosine-15-phosphorylated form. At this time the centrosomal and cytoplasmic cdc2/cyclin B1 is already active. This provides evidence that the activation of cdc2/cyclin B1 is initiated in the cytoplasm and that full activation of the translocated pool occurs in the nucleus.  相似文献   

3.
The role of BubR1 has been established mainly in mitosis as an essential mitotic checkpoint protein although it is expressed throughout the cell cycle. To explore a possible role of BubR1 in regulating the G2 phase of cell cycle, we have employed siRNA–mediated hBubR1 knockdown in HeLa cells. Here, we demonstrate that reducing BubR1 levels during the G2 phase causes accelerated mitotic entry. As expected, BubR1 depletion leads to degradation of cyclin B1 in the G2 phase. Intriguingly, cyclin B1 is prematurely targeted to centrosomes appearing at early G2 phase in BubR1-depleted cells despite its low levels. This is in contrast to control cells where cyclin B1 appears at the centrosomes in early prophase based on cell cycle-specific localization of CENP-F. Furthermore, cyclin B/Cdk1 kinase activity in early G2 is aberrantly high in BubR1-depleted cells. Together, our results indicate that hBubR1 depletion triggers premature centrosomal localization of cyclin B1 probably leading to premature mitotic entry. This study is the first to suggest a role of hBubR1 in controlling centrosome targeting of cyclin B1 and timing of mitotic entry.  相似文献   

4.
Rho GTPases regulate multiple signal transduction pathways that influence many aspects of cell behaviour, including migration, morphology, polarity and cell cycle. Through their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho and Cdc42 make several key contributions during the mitotic phase of the cell cycle, including spindle assembly, spindle positioning, cleavage furrow contraction and abscission. We now report that PRK2/PKN2, a Ser/Thr kinase and Rho/Rac effector protein, is an essential regulator of both entry into mitosis and exit from cytokinesis in HeLa S3 cells. PRK2 is required for abscission of the midbody at the end of the cell division cycle and for phosphorylation and activation of Cdc25B, the phosphatase required for activation of mitotic cyclin/Cdk1 complexes at the G2/M transition. This reveals an additional step in the mammalian cell cycle controlled by Rho GTPases.  相似文献   

5.
Aurora family kinases contribute to regulation of mitosis. Using RNA interference in synchronized HeLa cells, we now show that Aurora-A is required for mitotic entry. We found that initial activation of Aurora-A in late G2 phase of the cell cycle is essential for recruitment of the cyclin B1-Cdk1 complex to centrosomes, where it becomes activated and commits cells to mitosis. A two-hybrid screen identified the LIM protein Ajuba as an Aurora-A binding protein. Ajuba and Aurora-A interact in mitotic cells and become phosphorylated as they do so. In vitro analyses revealed that Ajuba induces the autophosphorylation and consequent activation of Aurora-A. Depletion of Ajuba prevented activation of Aurora-A at centrosomes in late G2 phase and inhibited mitotic entry. Overall, our data suggest that Ajuba is an essential activator of Aurora-A in mitotic commitment.  相似文献   

6.
At the onset of mitosis, the Golgi complex undergoes a multistep fragmentation process that is required for its correct partitioning into the daughter cells. Inhibition of this Golgi fragmentation results in cell cycle arrest at the G2 stage, suggesting that correct inheritance of the Golgi complex is monitored by a “Golgi mitotic checkpoint.” However, the molecular basis of this G2 block is not known. Here, we show that the G2-specific Golgi fragmentation stage is concomitant with centrosome recruitment and activation of the mitotic kinase Aurora-A, an essential regulator for entry into mitosis. We show that a block of Golgi partitioning impairs centrosome recruitment and activation of Aurora-A, which results in the G2 block of cell cycle progression. Overexpression of Aurora-A overrides this cell cycle block, indicating that Aurora-A is a major effector of the Golgi checkpoint. Our findings provide the basis for further understanding of the signaling pathways that coordinate organelle inheritance and cell duplication.  相似文献   

7.
The abrupt activation of CDK1 during mitotic entry requires suppression of CDK activity until a threshold concentration of cyclin B is synthesized, triggering the activation of a large pool of CDK. The cellular mechanisms that define the concentration of cyclin B at which the threshold occurs are unknown. Here we demonstrate that this threshold is regulated by Aurora-A kinase and phosphatase Inhibitor-2. In Xenopus CSF extracts that actively translate cyclin B1, immunodepletion of either endogenous xInhibitor-2 or endogenous xAurora-A caused delayed mitotic entry and normal timing was restored by addition of the respective recombinant proteins. Aurora-A depleted extracts also could be rescued by the addition of full-length xInhibitor-2, but not an xInhibitor-2 truncated of its PP1 binding motif. This demonstrates that inhibition of PP1 was required to compensate for the absence of Aurora-A. To test the hypothesis that the delays in mitotic entry in CSF extracts were due to increases in cyclin B thresholds, we employed interphase extracts, which are driven into mitosis by the addition of recombinant cyclin B in a non-linear (threshold) dose-response. Neutralization of endogenous xInhibitor-2 or xAurora with antibodies increased the cyclin B threshold concentration. Alternatively, the addition of exogenous Aurora-A or Inhibitor-2 lowered the concentration of cyclin B that triggered CDK activation. Because the cyclin B threshold could be raised or lowered by changing the amount of either Aurora-A or Inhibitor-2, the results demonstrate these regulatory proteins are involved in a signaling loop required to create the switching behavior characteristic of mitotic entry.  相似文献   

8.
NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.  相似文献   

9.
G2 arrest of cells suffering DNA damage in S phase is crucial to avoid their entry into mitosis, with the concomitant risks of oncogenic transformation. According to the current model, signals elicited by DNA damage prevent mitosis by inhibiting both activation and nuclear import of cyclin B1-Cdk1, a master mitotic regulator. We now show that normal human fibroblasts use additional mechanisms to block activation of cyclin B1-Cdk1. In these cells, exposure to nonrepairable DNA damage leads to nuclear accumulation of inactive cyclin B1-Cdk1 complexes. This nuclear retention, which strictly depends on association with endogenous p21, prevents activation of cyclin B1-Cdk1 by Cdc25 and Cdk-activating kinase as well as its recruitment to the centrosome. In p21-deficient normal human fibroblasts and immortal cell lines, cyclin B1 fails to accumulate in the nucleus and could be readily detected at the centrosome in response to DNA damage. Therefore, in normal cells, p21 exerts a dual role in mediating DNA damage-induced cell cycle arrest and exit before mitosis. In addition to blocking pRb phosphorylation, p21 directly prevents mitosis by inactivating and maintaining the inactive state of mitotic cyclin-Cdk complexes. This, with subsequent degradation of mitotic cyclins, further contributes to the establishment of a permanent G2 arrest.  相似文献   

10.
Understanding the regulation of mitotic entry is one of the most important goals of modern cell biology, and computational modeling of mitotic entry has been a subject of several recent studies. However, there are still many regulation mechanisms that remain poorly characterized. Two crucial aspects are how mitotic entry is controlled by its upstream regulators Aurora-A and Plk1, and how mitotic entry is coordinated with other biological events, especially G2/M checkpoint. In this context, we reconstructed a comprehensive computational model that integrates the mitotic entry network and the G2/M checkpoint system. Computational simulation of this model and subsequent experimental verification revealed that Aurora-A and Plk1 are redundant to the activation of cyclin B/Cdk1 during normal mitotic entry, but become especially important for cyclin B/Cdk1 activation during G2/M checkpoint recovery. Further analysis indicated that, in response to DNA damage, Chk1-mediated network rewiring makes cyclin B/Cdk1 more sensitive to the down-regulation of Aurora-A and Plk1. In addition, we demonstrated that concurrently targeting Aurora-A and Plk1 during G2/M checkpoint recovery achieves a synergistic effect, which suggests the combinational use of Aurora-A and Plk1 inhibitors after chemotherapy or radiotherapy. Thus, the results presented here provide novel insights into the regulation mechanism of mitotic entry and have potential value in cancer therapy.  相似文献   

11.
Entry into mitosis occurs after activation of Cdk1, resulting in chromosome condensation in the nucleus and centrosome separation, as well as increased microtubule nucleation activity in the cytoplasm. The active cyclin-B1-Cdk1 complex first appears at the centrosome, suggesting that the centrosome may facilitate the activation of mitotic regulators required for the commitment of cells to mitosis. However, the signalling pathways involved in controlling the initial activation of Cdk1 at the centrosome remain largely unknown. Here, we show that human Chk1 kinase localizes to interphase, but not mitotic, centrosomes. Chemical inhibition of Chk1 resulted in premature centrosome separation and activation of centrosome-associated Cdk1. Forced immobilization of kinase-inactive Chk1 to centrosomes also resulted in premature Cdk1 activation. Conversely, under such conditions wild-type Chk1 impaired activation of centrosome-associated Cdk1, thereby resulting in DNA endoreplication and centrosome amplification. Activation of centrosomal Cdk1 in late prophase seemed to be mediated by cytoplasmic Cdc25B, whose activity is controlled by centrosome-associated Chk1. These results suggest that centrosome-associated Chk1 shields centrosomal Cdk1 from unscheduled activation by cytoplasmic Cdc25B, thereby contributing to proper timing of the initial steps of cell division, including mitotic spindle formation.  相似文献   

12.
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.  相似文献   

13.
14.
Mitosis is thought to be triggered by the activation of Cdk-cyclin complexes. Here we have used RNA interference (RNAi) to assess the roles of three mitotic cyclins, cyclins A2, B1, and B2, in the regulation of centrosome separation and nuclear-envelope breakdown (NEB) in HeLa cells. We found that the timing of NEB was affected very little by knocking down cyclins B1 and B2 alone or in combination. However, knocking down cyclin A2 markedly delayed NEB, and knocking down both cyclins A2 and B1 delayed NEB further. The timing of cyclin B1-Cdk1 activation was normal in cyclin A2 knockdown cells, and there was no delay in centrosome separation, an event apparently controlled by the activation of cytoplasmic cyclin B1-Cdk1. However, nuclear accumulation of cyclin B1-Cdk1 was markedly delayed in cyclin A2 knockdown cells. Finally, a constitutively nuclear cyclin B1, but not wild-type cyclin B1, restored normal NEB timing in cyclin A2 knockdown cells. These findings show that cyclin A2 is required for timely NEB, whereas cyclins B1 and B2 are not. Nevertheless cyclin B1 translocates to the nucleus just prior to NEB in a cyclin A2-dependent fashion and is capable of supporting NEB if rendered constitutively nuclear.  相似文献   

15.
We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A–mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.  相似文献   

16.
The CDC25 phosphatases play an essential role in the spatial and temporal regulation of the control of entry into mitosis. These enzymes dephosphorylate and activate the CDK-cyclin complexes, in particular CDK1-cyclin B1, the master regulator of mitosis. Three CDC25 genes in exist in humans (CDC25A, CDC25B and CDC25C), and the original model of their function proposed that they acted sequentially at discrete cell cycle transitions, i.e., that CDC25A was dedicated to the activation of the G1/S progression-associated CDKs, CDC25B controlled early prophase events, while CDC25C was thought to achieve the full activation of CDK1-cyclin B1 at entry into mitosis. Indeed, the situation appears much more complicated than this, and current evidence shows that all three CDC25 phosphatases act at a variety of mitotic stages, with and considerable experimental evidence to indicate that all three are involved in orchestrating cell cycle progression in mitosis.1 Previous work has led to the proposal that CDC25B acts as the starter of mitosis. Additionally, a number of recent studies have shown that CDC25B also localizes to the centrosome where its activating role on CDK-cyclin complexes appears to be regulated by multiple activatory and inhibitory kinases.2-5 As such, it has been proposed that CDC25B might act as a central centrosomal integrator and a trigger for the initial events that set up the sequence of events leading to mitosis.6 As a target of the first small pool of activated CDK1-cyclin B1 that translocates to the nucleus, CDC25C was thought to subsequently be responsible for the massive activation of the nuclear pool of CDK1-cyclin B1 that occurs at entry into mitosis. A report from the group headed by May Morris presented in this issue of Cell Cycle (Bonnet et al., pp. 1990–7) provides new insight into the dynamics of these events and in the understanding of the involvement of both CDC25B and CDC25C in the earliest stages of the G2/M transition. Bonnet and collaborators show for the first time, as has long been suspected but until now never observed, the localization of a fraction of CDC25C at the centrosome during interphase. This centrosomal localization occurs from S-phase onward and is also present during mitosis. Using FRAP analysis, their study elegantly shows that this centrosomal population of CDC25C is highly dynamic. Furthermore, the authors show that mutations of CDC25C that impair its catalytic activity or its binding to its CDK-cyclin substrates promote its centrosomal accumulation, thus suggesting an active role in the dephosphorylation and activation of CDK-cyclins at this location. Together with previous reports showing that the activity of CDC25C is amplified following its mitotic phosphorylation by CDK1-cyclin B1 while the activity of CDC25B is not,7 these new findings lead to the proposition of an alternative regulatory model for the control of the G2/M transition. In this model, the CDK1-cyclin B1 complex is activated at the centrosomal level both by the initial action of CDC25B (as has already been suggested8) as well as by the centrosomal pool of activated CDC25C that subsequently amplifies the process through its own phosphorylation and activation (Fig. 1). While CDC25B can be considered as a “starter”, CDC25C plays the role of the “gas pedal” that speeds up entry into mitosis by amplifying the signaling cascade from the centrosome and finally increasing nuclear levels. This model is certainly too simplistic and does not integrate many major issues that remain to be investigated. Among these unsolved questions is the role that the multiple splice variants of the CDC25 phosphatases might play. There are at least five variants for both CDC25B and CDC25C whose specific regulation and roles in the dephosphorylation of individual CDK-cyclins substrates is still unknown.5 Likely related to this question is the issue of the presence of both CDC25B and CDC25C until late stages of mitosis. Why is CDC25C associated with the centrosome when, according to the dogma, the entire pool of CDK1-cyclin B1 has been fully activated? An attractive hypothesis is to speculate that the CDC25 phosphatases might continue to play discrete roles in the dephosphorylation and the activation of sub-populations of CDK-cyclins throughout the entire process of mitosis to ensure a fine tuning of the kinase activities that are involved in the many architectural and functional aspects of the mitotic figure. Centrosomes are made up of numerous proteins whose amino acid sequence suggests a coiled-coil tertiary structure. Increasing evidence indicates that this molecular structure may be well-designed for the organization of multiprotein scaffolds that can anchor a diversity of activities ranging from protein complexes involved in microtubule nucleation to multicomponent pathways for cellular regulation.9 By physically linking components of a common pathway, molecular scaffolds can increase the local concentration of components, limit nonspecific interactions, and provide spatial control for regulatory pathways by positioning by positioning them at specific sites in proximity to downstream targets or upstream modulators. On the basis of the increasing number of regulatory molecules anchored at the centrosome, it is likely that this organelle serves as a centralized control center for regulating a diversity of cellular activities. Recent studies have provided some of the first functional links between centrosomes and regulatory networks in cell cycle transitions from G1 to S-phase, G2 to M-phase and metaphase to anaphase. The findings by Bonnet et al. support this line of evidence.

References

Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18:185-91. Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C, Mirey G, Bouche J, Theis-Febvre N, Schmitt E, Monsarrat B, Prigent C, Ducommun B. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2/M transition. J Cell Science 2004; 117:2523-31. Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 2006; 119:4269-75. Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle 2008; 7:401-6. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007; 7:495-507. Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 2005; 171:35-45. Baldin V, Pelpel K, Cazales M, Cans C, Ducommun B. Nuclear Localization of CDC25B1 and Serine 146 Integrity Are Required for Induction of Mitosis. J Biol Chem 2002; 277:35176-82. Jackman M, Lindon C, Nigg EA, Pines J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 2003; 5:143-8. Kramer A, Lukas J, Bartek J. Checking out the centrosome. Cell Cycle 2004; 3:1390-3.  相似文献   

17.
Wang L  Zhu K  Zheng Y 《Biochemistry》2004,43(46):14584-14593
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.  相似文献   

18.
19.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

20.
Alterations in the expression and activity of the centrosomal kinase, Aurora-A/STK15, affect genomic stability, disrupt the fidelity of centrosome duplication, and induce cellular transformation. A mitotic spindle-associated protein, astrin/DEEPEST, was identified as an Aurora-A interacting protein by a two-hybrid screen. Astrin and Aurora-A co-express at mitosis and co-localize to mitotic spindles. RNAi-mediated depletion of astrin abolishes the localization of Aurora-A on mitotic spindles and leads to a moderate mitotic cell cycle delay, which resembles the mitotic arrest phenotypes in siAurora-A treated cells. However, depletion of Aurora-A does not affect astrin localization, and co-depletion of both astrin and Aurora-A causes a mitotic arrest phenotype similar to depletion of siAurora-A alone. These results suggest that astrin acts upstream of Aurora-A to regulate its mitotic spindle localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号