首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among its many proposed functions, neuropeptide Y (NPY) is thought to modulate the hypothalamic-pituitary axis. Specifically, increased hypothalamic NPY signaling may be critical in mediating the neuroendocrine response to fasting. To determine the consequences of NPY deficiency on endocrine physiology, multiple hormones were quantitated in wildtype and NPY-knockout mice under fed and fasted conditions. Serum concentrations of leptin, corticosterone, thyroxine, and testosterone were normal in NPY-knockout males fed ad libitum. A 48-hour fast resulted in a 50% reduction in leptin, a 60% reduction in thyroxine, a 75% reduction in testosterone, and a 12-fold increase in corticosterone in both wildtype and NPY-knockout mice. Fasting also increased the estrous cycle length by 3 days in both wildtype and NPY-deficient female mice. We conclude that NPY is not essential for appropriate function of the gonadotropic, thyrotropic, or corticotropic axes under ad lib fed conditions or in response to acute fasting.  相似文献   

2.
While a dysregulation in neuropeptide Y (NPY) signaling has been described in rodent models of obesity, few studies have investigated the time-course of changes in NPY content and responsiveness during development of diet-induced obesity. Therefore we investigated the effect of differing lengths (2-17 weeks) of high-fat diet on hypothalamic NPY peptide content, release and NPY-induced hyperphagia. Male Sprague-Dawley rats (211 +/- 3 g) were fed either a high-fat diet (30% fat) or laboratory chow (5% fat). Animals were implanted with intracerebroventricular cannulae to investigate feeding responses to NPY (0.5 nmol, 1 nmol) after 4 or 12 weeks of diet. At the earlier stage of obesity, NPY-induced hyperphagia was not altered; however, animals maintained on the high-fat diet for the longer duration were hyper-responsive to NPY, compared to chow-fed control rats (p < 0.05). Overall, hypothalamic NPY peptide content tended to be decreased from 9 to 17 weeks of diet (p < 0.05). Total hypothalamic NPY content was negatively correlated with plasma leptin concentration (p < 0.05), suggesting the hypothalamic NPY system remains responsive to leptin's inhibitory signal. In addition, hypothalamic NPY overflow was significantly reduced in high-fat fed animals (p < 0.05). Together these results suggest a reduction in hypothalamic NPY activity in high-fat fed animals, perhaps in an attempt to restore energy balance.  相似文献   

3.
Does neuropeptide Y contribute to the anorectic action of amylin?   总被引:2,自引:0,他引:2  
Morris MJ  Nguyen T 《Peptides》2001,22(3):541-546
Neuropeptide Y (NPY) is a potent feeding stimulant acting at the level of the hypothalamus. Amylin, a peptide co-released with insulin from pancreatic beta cells, inhibits feeding following peripheral or central administration. However, the mechanism by which amylin exerts its anorectic effect is controversial. This study investigated the acute effect of amylin on food intake induced by NPY, and the effect of chronic amylin administration on food intake and body weight in male Sprague Dawley rats previously implanted with intracerebroventricular (icv) cannulae. Rats received 1 nmol NPY, followed by amylin (0.05, 0.1, 0.5 nmol) or 2 microl saline. Increasing doses of amylin resulted in a dose-dependent inhibition of NPY-induced feeding by 31%, 74% and 99%, respectively (P < 0.05). To determine the chronic effects of i.c.v. amylin administration on feeding, rats received 0.5 nmol amylin or saline daily, 30 min before dark phase, over 6 days. Amylin significantly reduced food intake at 1, 4, 16 and 24 hours; after 6 days, amylin-treated rats showed a significant reduction in body weight, having lost 17.3 +/- 6.1 g, while control animals gained 7.7 +/- 5.1 g (P < 0.05). Brain NPY concentrations were not elevated, despite the reduced food intake, suggesting amylin may regulate NPY production or release. Thus, amylin potently inhibits NPY-induced feeding and attenuates normal 24 hour food intake, leading to weight loss.  相似文献   

4.
Neuropeptide Y (NPY) is the most powerful peptide drug stimulating feeding in rats. Rats with paraventricular hypothalamic (PVH) cannulae were used to investigate the mechanisms involved in NPY-induced feeding. Consistent with previous reports, injection of 2 μg of NPY into the PVH significantly increased the cumulative food intake over 1-, 2- and 4-hr periods. Ad lib feeding decreased significantly two days after pertussis toxin (PT) administration, but recovered to nearly normal levels on the fourth day. PT had no immediate effect on NPY-induced feeding; however, four days after PT was injected NPY (2 μg) did not increase the food intake compared to control. In vitro investigations showed that isoproterenol-stimulated adenylate cyclase activity in the hypothalamus of control rats was inhibited by NPY. In PT-treated rats, however, no inhibition of cAMP production was observed. These results suggest that cAMP may mediate NPY-induced feeding and that a PT-sensitive G protein may be involved in this signal transduction.  相似文献   

5.
Age-related changes in neuropeptide Y (NPY) regulation were studied in rat adrenal glands, brains, and blood by radioimmunoassay and biochemical characterization using reversed phase HPLC and gel filtration chromatography. NPY immunoreactivity (pmol/g tissue +/- SEM) in rat adrenal glands increased from 7 +/- 1 (6 weeks old) to 1,500 +/- 580 (69 weeks old). Biochemical characterization by HPLC showed that this increase was due to those of NPY and methionine sulfoxide NPY. In contrast, in rat brain, NPY content decreased in an age-dependent manner specifically in striatum, hippocampus, medulla oblongata, and spinal cord and the sulfoxide form was not detected. In rat blood, the circulating level of NPY was high (3-5 pmol/ml plasma +/- SEM) but did not change significantly with age or by adrenal demedullation. Only a small increase of the sulfoxide form of NPY was observed in aged rat plasma. The age-dependent changes in regulation and modification of NPY in adrenal glands and in specific brain areas may have physiological relevance in the regulation of catecholamine release from adrenal glands and some brain functions during aging.  相似文献   

6.
Glucocorticoid hormones are important for vital functions and act to modulate inflammatory and immune responses. In contrast to other hormonal systems no endogenous mediators have been identified that can directly counter-regulate their potent anti-inflammatory and immunosuppressive properties. Glucocorticoids are known to interfere with the ability of the macrophage not only to induce and amplify an immune response but also to inhibit macrophage inflammatory effector functions. Although the actual immunocompetence of animals undergoing endocrine gland ectomy has never been directly studied, there is no doubt that adrenal hormones are deeply involved in the development and maintenance of the immunitory functions and this may in turn influence the inflammatory reaction. To study the effect of endogenous glucocorticoids on the functions of rat peritoneal macrophages and induction of humoral immune response we observed some of the rat peritoneal macrophage effector functions, provided that endogenous glucocorticoids are depicted by adrenalectomy. The mean phagocytic index (PI) of control macrophage (Mphi) is increased from 23,825 +/- 427 to 31,895 +/- 83 after adrenalectomy (P < or = 0.001). Intracellular killing capacity in control cell is 82% which is found to be 73% in case of adrenalectomised cell (p < 0.05). The amount of nitric oxide released from control Mphi 20.25 +/- 1 microM following adrenalectomy shows the amount of nitric oxide release was 18.25 microM (p < or = 0.01 ). The percentage of DNA fragmentation in control Mphi was 68.82 +/- 4 which was reduced to 56.76 +/- 1 after adrenalectomy (p < or = 0.01). In sheep red blood cell (SRBC) immunised and adrenalectomised animal, agglutination titre was obtained at lowest antibody concentration (1 : 128) whereas serum from SRBC immunised normal rats showed early agglutination (1: 32). Endogenous glucocorticoid depleted rats show enhanced phagocytic capacity, antibody raising capacity as well as on the other hand adrenal hormone insufficiency reduces the intracellular killing capacity, nitric oxide (NO) release, improper cell maturation and heightens the probability of infection. These observations demonstrate a counter-regulatory system via glucocorticoid that functions to control inflammatory and immune responses.  相似文献   

7.
Metabolism is controlled through homeostatic system consisting of central centers, gut hormones, hormones from adipose tissue and the other hormonal axes. This cooperation is based on cross-talk between central and peripheral signals. Among them the hypothalamus plays a crucial role, with interconnected nuclei forming neuronal circuits. Other regions in the brain, such as the brain stem, the endocannabinoid system, the vagal afferents, are also involved in energy balance. The second component is peripheral source of signals--the gastrointestinal tract hormones. Additionally, adipokines from adipose tissue, thyrotropic, gonadotropic and somatotropic axes play a role in energy homeostasis. Knowledge about all components of this neuroendocrine circuit will be helpful in developing novel therapeutic approaches against the metabolic syndrome and its components.  相似文献   

8.
In order to know the contribution of adrenal and gonadal androgens to the development of the side gland of Suncus murinus, we studied the effects of gonadectomy and adrenalectomy on gland thickness and the plasma levels of testosterone, androstenedione (delta 4-dione) and dehydroepiandrosterone (DHA). In males, castration decreased gland thickness to 71% of the control. The plasma levels of delta 4-dione and testosterone were also decreased from 4.16 +/- 0.50 and 0.65 +/- 0.10 ng/ml to 1.44 +/- 0.17 and 0.12 +/- 0.02 ng/ml, respectively. Adrenalectomy following castration caused no notable additional decrease in gland thickness, although the plasma levels of delta 4-dione and DHA were further decreased by this treatment. In females, ovariectomy affected neither gland thickness nor plasma androgen levels, except for a peculiar rise in the plasma concentration of delta 4-dione. In contrast, adrenalectomy in addition to ovariectomy decreased gland thickness to 63% of the control and the plasma concentrations of delta 4-dione and DHA from 1.43 +/- 0.26 and 0.43 +/- 0.05 ng/ml to 0.37 +/- 0.11 and 0.10 +/- 0.04 ng/ml, respectively. Therefore, testicular androgens are required for the male side gland to fully develop, whereas in the female adrenal androgens are important for the maintenance of sebaceous gland activity and delta 4-dione is quantitatively more important than DHA. One hour after the intraperitoneal administration of [3H]delta 4-dione, dihydrotestosterone was found to be the major androgen bound to nuclei of the side gland. Thus, the side gland can utilize delta 4-dione as a precursor of a more active androgen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have studied the effect of adrenalectomy on the testicular secretion of testosterone in the rat. In the acute period following adrenalectomy plasma testosterone levels were reduced but this was no different from those levels in appropriate sham-operated controls. This reduction in plasma testosterone levels is probably a result of direct effects of anaesthesia and surgical stress. Whilst studies on the late effect of adrenalectomy avoided this problem, plasma testosterone levels were normal in both adrenalectomised and sham-operated animals. Resetting of anterior pituitary-gonadal relationships may mask the absence of any contribution made by the adrenal gland to testicular steroidogenesis. In contrast to previous data we were unable to demonstrate that adrenalectomy influenced the secretion of testosterone in the male rat.  相似文献   

10.
Neuropeptide Y and sympathetic vascular control in man   总被引:7,自引:0,他引:7  
A parallel increase in systemic plasma levels of neuropeptide Y (NPY)-like immunoreactivity (LI) and noradrenaline (NA) was found during thoracotomy and surgery involving cardiopulmonary bypass in man. Thus, plasma levels of NPY-LI increased from 29 +/- 4 pmol/l before anaesthesia to 59 +/- 10 after thoracotomy and to 87 +/- 8 pmol/l upon cardiopulmonary bypass. The corresponding NA levels increased from 1.3 +/- 0.1 nmol/l before anaesthesia to 3.0 +/- 0.6 and 4.2 +/- 5 nmol/l after thoracotomy and cardiopulmonary bypass, respectively. A significant correlation was found between plasma levels of NPY-LI and NA during the operation but not between NPY-LI and adrenaline. The NPY-LI in human plasma was found to be similar to synthetic porcine NPY on reversed phase high performance liquid chromatography. Human submandibular arteries contained high levels of NPY-LI (24 +/- 3 pmol/g). In in vitro experiments on isolated human submandibular arteries, NPY in low concentrations (1000 pmol/l) was found to potentiate the contractile effects of NA or transmural nerve stimulation and to exert vasoconstrictor activity per se in higher concentrations. The calcium-entry antagonist nifedipine abolished both the NPY-induced contractions and the enhancement of NA-evoked contractions. NPY depressed the nerve stimulation-evoked 3H-NA release from human submandibular arteries via a prejunctional mechanism which was resistant to nifedipine. NPY contracted human mesenteric veins and renal arteries, but not mesenteric arteries. In conclusion, NPY seems to be co-released with NA upon sympathetic activation in man. Furthermore, NPY exerts both pre- and postjunctional effects on sympathetic control of human blood vessels.  相似文献   

11.
IV bolus administration of 2.5-50 micrograms NPY (0.6-12.5 nmol) to conscious rats produced a dose- and time-dependent increase in systolic and diastolic blood pressure. Following priming with 2.5 micrograms NPY, or larger doses, the subsequent administrations of noradrenaline produced pressor responses that were potentiated both in magnitude and duration. The NPY-induced potentiation of the pressor response to noradrenaline was dose-dependent and extended to the pressor action of adrenaline and angiotensin II but not to the hypotensions produced by bradykinin or isoproterenol. The potentiation was not related to the fact that multiple doses of catecholamines were repeated. Reserpine did not substantially modify the NPY-induced potentiation of the pressor activity of the catecholamines. Chemical sympathectomy following 6-hydroxydopamine caused a marked supersensitivity to the catecholamines and NPY but obliterated the NPY-induced potentiation of the pressor effect of adrenaline. Nifedipine reduced the pressor action of the catecholamines and NPY but did not attenuate the NPY-induced potentiation of the pressor action of catecholamines. It is concluded that the acute pressor effect of NPY and of the potentiation of the catecholamine pressor effects involve different mechanisms.  相似文献   

12.
Wang JZ 《生理学报》2004,56(1):79-82
探讨神经肽Y(neuropeptide Y,NPY)在SD大鼠中脑导水管周围灰质(periaqueductal grey,PAG)对伤害性刺激反应的作用。应用热板和机械压力实验法,以大鼠后爪缩爪反应潜伏期(paw withdrawal latency,PWL)为痛阈指标。观察PAG内微量注射NPY对PWLS的影响。PAG内注射0.05、0.1、0.2nmol NPY均显著地增加慢性神经痛大鼠的双侧PWLS,且呈量效关系。NPY引起的PWLs增加可被Y1受体拮抗剂和阿片受体拮抗剂所阻断。结果提示,在大鼠PAG微量注射NPY可产生明显的镇痛作用。  相似文献   

13.
Rat steroidogenic tissues take up cholesterol, and it has been suggested that this process plays a regulatory role in steroid hormone synthesis. To provide evidence for this hypothesis, we carried out studies in lipoprotein-deficient rats. Lipoprotein deficiency, achieved by treating male rats with pharmacological amounts of estradiol, led to profound lowering of plasma cholesterol (8 +/- 2 versus 54 +/- 4 mg/dl) and adrenal cholesteryl ester content (113 +/- 57 versus 747 +/- 108 micrograms/organ). Basal serum corticosterone levels were decreased by 50%, and the response to adrenocorticotropic hormone (ACTH) was totally abolished. Injection of high density lipoprotein (HDL) to estradiol-treated animals restored the response of corticosterone to ACTH. Comparable in vitro studies with adrenal cell suspensions obtained from lipoprotein-deficient rats confirmed the in vivo data. Measurement of [14C]acetate incorporation and uptake of both HDL- and low density lipoprotein (LDL)-cholesterol in these adrenal cells showed a progressive increase with the duration of estradiol treatment, and neither of these two phenomena was altered by ACTH. These results provide in vitro and in vivo evidence for the hypothesis that normal adrenal steroidogenesis depends upon cholesterol delivery from plasma. Furthermore, under the conditions studied, ACTH does not stimulate adrenal de novo cholesterol biosynthesis nor the uptake of either HDL- or LDL-cholesterol.  相似文献   

14.
One day after the cessation of treatment the Leydig cells of the fetuses of pregnant rats, treated between the 11th and 15th or the 16th and 20th days of gestation, reacted to pituitary hormones. This finding indicates that both the receptors and the postreceptor mechanisms were in operative state. The effect of the thyrotropic hormone (TSH) overlaps the effect of related gonadotropic hormone (hCG), although this effect becomes smaller from the 21st day. The parameters investigated - the spectrocyto-fluorimetrically measured RNA-DNA ratio and the plasma testosterone level - ran generally in parallel. Similarly to the above-mentioned hormones, prolactin also increased the testosterone level (though to lesser degree than hCG and TSH did), however, while it increased the RNA level but at the age of 16 days, it decreased it the age of 21 days. Somatotropin (GH) also increased somewhat the testosterone level; however, the effects of the two related hormones (Pr and GH) fell far beyond the effect of either TSH or hCG.  相似文献   

15.
Differences in gender are in part responsible for the development of insulin resistance (IR) and associated hypertension. Currently, it is unclear whether these differences are dictated by gender itself or by the relative changes in plasma estrogen and/or testosterone. We investigated the interrelationships between testosterone and estrogen in the progression of IR and hypertension in vivo in intact and gonadectomized fructose-fed male rats. Treatment with estrogen significantly reduced the testosterone levels in both normal chow-fed and fructose-fed rats. Interestingly, fructose feeding induced a relative increase in estradiol levels, which did not affect IR in both intact and gonadectomized fructose-fed rats. However, increasing the estrogen levels improved insulin sensitivity in both intact and gonadectomized fructose-fed rats. In intact males, fructose feeding increased the blood pressure (140 +/- 2 mmHg), which was prevented by estrogen treatment. However, the blood pressure in the fructose-fed estrogen rats (125 +/- 1 mmHg) was significantly higher than that of normal chow-fed (113 +/- 1 mmHg) and fructose-fed gonadectomized rats. Estrogen treatment did not affect the blood pressure in gonadectomized fructose-fed rats (105 +/- 2 mmHg). These data suggest the existence of a threshold value for estrogen below which insulin sensitivity is unaffected. The development of hypertension in this model is dictated solely by the presence or absence of testosterone. In summary, the development of IR and hypertension is governed not by gender per se but by the interactions of specific sex hormones such as estrogen and testosterone.  相似文献   

16.
In order to study the vascular and adrenal renin angiotensin system in the chronic phase (4 months after clipping) of 'two-kidney, one-clip' hypertension in rats, systolic blood pressure, plasma renin activity, and tissue renin-like activity in both aorta and adrenal have been measured. Renin activity in adrenal gland was studied in both the zona glomerulosa (GLO) and the remainder of the gland. Results showed an increase in vascular renin activity in chronic hypertensive rats. Moreover it was found that GLO of hypertensive rats presented a significant increase in renin-like activity compared with controls (349.43 +/- 43.86 versus 167 +/- 34.25 ng AI/g/20 h, p less than 0.01) and the fasciculata-reticular-medullar (FRM) portion also showed greater renin activity (345.16 +/- 64.36 versus 57.90 +/- 4.83 ng AI/g/20 h, p less than 0.01). The higher levels of vascular and FRM renin-like activity in chronic renal hypertension are probably a consequence of plasma renin increase. This hypothesis is supported by the fact that bilateral nephrectomy in normal rats induces a significant decrease in plasma renin activity and both aortic and FRM renin-like activity. On the other hand the GLO renin-like activity could depend on both plasma renin and local synthesis since bilateral nephrectomy induces an increase in the renin-like activity in this tissue. These data support the idea that aortic and FRM renin are, at least in part, due to plasma renin uptake and GLO renin is an autonomic system.  相似文献   

17.
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.  相似文献   

18.
Circulating concentrations of neuropeptide Y-like immunoreactivity (NPY), noradrenaline (NA) and adrenaline (AD) were measured in conscious, chronically catheterized rats submitted to various stress protocols. Basal plasma levels of NPY, NA and AD (194 +/- 52 fmol/ml, 0.90 +/- 0.11 pmol/ml and 0.52 +/- 0.07 pmol/ml) were increased by handling (+132%, +76% and +629%, respectively) and rose further during electric shock treatment. Adrenalectomy resulted in the complete disappearance of circulating adrenaline but did not alter either control or stress values of noradrenaline. In comparison circulating levels of NPY were reduced, but not significantly in adrenalectomized animals. Insulin stress induced a large increase in plasma AD levels and cold stress induced an increase in plasma NA levels, without any parallel change in NPY concentrations. These results demonstrate that NPY, which is colocalized with catecholamines in the peripheral nervous systems, is also released during stress responses and that its release parallels more closely changes in circulating NA than AD. Furthermore, stress-induced changes in circulating NPY-like immunoreactivity do not originate from the adrenal gland but mainly from the peripheral nervous system, and the release of NPY is dependent upon the nature of the stimulus.  相似文献   

19.
Insulin-like growth factors (IGFs) 1 and 2 were measured in the adrenal glands of rats undergoing either compensatory growth following left unilateral adrenalectomy or adrenal regeneration following bilateral adrenal enucleation. In normal rat adrenal gland, the tissue concentration of IGF2 (7.45 +/- 0.99 pg/micrograms protein) wa higher than IGF1 (1.26 +/- 0.23 pg/micrograms protein), both peptides being more abundant in the inner zones of the adrenal gland compared to the capsule-glomerulosa. During compensatory growth of the right adrenal gland, IGF1 and 2 increased significantly compared with control right adrenal glands at 24 h following left unilateral adrenalectomy (P less than 0.001). At 68 h, the increase remained significant for IGF1 (P = 0.012). The two peptides were measured in the regenerating adrenal gland at 7, 14 and 21 days following bilateral enucleation. Whilst there was a trend towards an increase in the IGF1 and 2 content of regenerating adrenal glands, the increase was significant only for IGF2 in the left adrenal gland at 21 days following enucleation. Plasma IGF1 and 2 did not increase compared to controls during the experiments (110.97 +/- 1.95 and 46.33 ng/ml, respectively), suggesting that the changes in tissue IGF reflect increased local production during rapid growth of the adrenal gland.  相似文献   

20.
Neuropeptide Y (NPY) is a key factor in the neurochemical control of food intake, and obstructive cholestasis can be associated with disturbances in food intake. Our aim in this study was to determine whether obstructive cholestasis in the rat is associated with defective central responsiveness to NPY. Cholestasis was induced in rats by surgical bile duct resection. Rats with obstructive cholestasis exhibited a 20% reduction in food intake 2 days after laparotomy (compared with sham-resected controls) that had resolved by 4 days after surgery. Responsiveness to the orexigenic action of NPY was tested by measuring food intake after intracerebroventricular injection of NPY. In sham-resected rats, NPY infusion strikingly increased food intake, whereas bile duct-resected (BDR) rats showed a consistent significantly impaired feeding response to NPY at postlaparotomy days 2, 4, and 7. Separate experiments measured specific binding of [(3)H]NPY to hypothalamic receptors. Fos protein expression was measured in the hypothalamic paraventricular nucleus (PVN) as a marker of NPY-induced neuronal activation. The decreased orexigenic responsiveness to NPY was not caused by altered NPY binding at hypothalamic receptors or its ability to activate neurons in the PVN. Therefore, cholestatic rats demonstrate an attenuated NPY-induced orexigenic drive that occurs early after biliary obstruction, when cholestatic rats exhibit reduced food intake, and persists despite the return of food intake to normal levels and the presence of intact central NPY-related neuronal pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号