首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
目的:制备用于检测小鼠胚胎早期Ucp2基因表达的地高辛标记的特异性RNA探针。方法:提取小鼠胚胎脑组织总RNA,设计引物,通过RT-PCR方法获取Ucp2基因片段,将其克隆到pGEM-T载体。分别利用Sp6、T7和Ucp2特异性引物,PCR扩增获得转录模板,通过Sp6及T7 RNA聚合酶,获得地高辛标记的正义、反义Ucp2 RNA原位杂交探针。检测标记探针的效价后,通过全胚胎原位杂交分析制备探针的特异性和杂交效果。结果:成功获得Ucp2基因正义、反义探针,反义探针能高效灵敏检测到Ucp2基因在小鼠胚胎Ed9.5、Ed10.5神经系统呈现高表达,而正义探针未能检测到表达信号。结论:成功制备了特异高效的地高辛标记Ucp2 RNA原位杂交探针,为进一步研究Ucp2基因在小鼠胚胎组织中的表达,尤其在神经组织的定位奠定基础。  相似文献   

2.
3.
4.
The natural occurrence, sleep, and extra-sleep effects of delta sleep-inducing peptide (DSIP) have been shown by different laboratories. However, neither an in vitro assay system nor a probable mechanism of action of the peptide have been conclusively demonstrated so far. The recent finding that DSIP influences the nocturnal rise of N-acetyltransferase (NAT) activity in rat pineal led us to investigate a possible effect on pharmacologically induced NAT activity in vivo and in vitro. Stimulation of the enzyme with adrenergic drugs such as isoproterenol and phenylephrine was reduced by DSIP at doses of 150 and 300 μg/kg injected subcutaneously. In vitro, 6, 150 and 300 nM DSIP attenuated isoproterenol stimulation of the enzyme in cultured pineals, whereas 150 nM DSIP effectively reduced stimulation induced by a combination of the two drugs. The peptide alone did not influence NAT activity in vitro, but produced a slight stimulation in vivo. To our knowledge, these results represent the first report of a direct interaction of DSIP with adrenergic transmission. The in vitro system could prove useful for establishing possible mechanism(s) of action of the ‘sleep peptide.’  相似文献   

5.
High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba×Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.  相似文献   

6.
胡滨滨  薛治慧  张翠 《植物学报》2021,56(3):330-338
小RNA是对植物生长发育十分重要的一类小分子核苷酸,在多种生命过程以及胁迫响应中发挥重要调控作用。对小RNA的定位研究有助于揭示它们的功能,而小RNA荧光原位杂交(sRNA-FISH)是一种通过荧光检测技术对生物体内小RNA进行定性或半定量分析的技术,目前该技术已经在动物体内被广泛应用,而在植物体内的应用还比较少。该文...  相似文献   

7.
The activities of superoxide dismutase, catalase and glutathione reductase were not affected by in vitro incubation with the intracellular proteinase calpain, suggesting that these enzymes are not in vivo substrates of calpain. In contrast, the activity of another important antioxidant enzyme, glutathione peroxidase, is stimulated in vitro by calpain. This may explain the correlation between elevations in glutathione peroxidase activity and calpain activity which occur in aging, exercised and dystrophic muscle. Calpain treatment in vitro caused a large decrease in the activity of carnosine synthetase which is involved in the synthesis of the putative antioxidant carnosine. This may be the reason for the in vivo correlation between elevated calpain and diminished carnosine levels in aging, hypertensive, denervated and dystrophic muscles.  相似文献   

8.
The subunit composition of RNA polymerase II (polII) was compared between the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. For this purpose, we partially purified the enzyme from S. pombe. Judging from the co-elution profiles in column chromatographies of both the RNA polymerase activity and the two large subunit polypeptides (subunit 1 (prokaryotic β' homologue) and subunit 2 (β homologue)), the minimum number of S. pombe polII-associated polypeptides was estimated to be ten, less than the proposed subunit number of the S. cerevisiae enzyme. These ten putative subunits of S. pombe polII correspond to subunits 1, 2, 3, 5, 6, 7, 8, 10, 11 and 12 of the S. cerevisiae counterparts  相似文献   

9.
Cytokines produced by immune-activated testicular interstitial macrophages (TIMs) may play a fundamental role in the local control mechanisms of testosterone biosynthesis in Leydig cells. We investigated whether in vivo immune-activation of TIMs can modulate Leydig cell steroidogenesis. To immune activate TIMs in vivo, mice were injected intraperitoneally (i.p.) with lipopolysaccharide (LPS, 6 mg/kg). TIMs and Leydig cells were purified for RNA analysis. LPS treatment resulted in a 47-fold increase in interleukin-1β (IL-1β) mRNA in TIMs. P450c17 mRNA levels in the Leydig cells from the same animals, decreased to less than 10% compared to control. The effect of LPS on IL-1β and P450c17 mRNA levels was reversible on both TIMs and Leydig cells, respectively. To determine if the effect of LPS on P450c17 was mediated by a possible decrease in pituitary LH secretion, mice were co-injected with LPS and hCG. Treatment with hCG did not change the effect observed with LPS alone, in TIMs or in Leydig cells. In vitro, LPS treatment of TIMs resulted in marked induction of IL-1β mRNA expression. In parallel, in vitro treatment of Leydig cells with recombinant IL-1 resulted in a dose-dependent inhibition of P450c17 mRNA expression and testosterone production. These data demonstrate that LPS treatment, in vivo and in vitro, induced IL-1 gene expression in TIMs, and that IL-1 inhibits P450c17 mRNA in vitro. Therefore, we suggest that immune-activation of TIMs might have caused the observed inhibition of P450c17 gene expression in Leydig cells in vivo.  相似文献   

10.
Complex formation of T7 DNA with RNA polymerase from E. coli B/r WU-36-10-11-12 (E. coli W 12) and its rifampicin-resistant mutant rpoB409 was studied. The rpoB409 mutant possesses a highly pleiotropic effect due to alteration in the RNA polymerase β-subunit structure. The two RNA polymerases have been previously shown to differ in gene selection during RNA synthesis on T7 DNA. In this study it was found that the change in selective properties of the mutant RNA polymerase occurs during its interaction with DNA, the general ability of the enzyme to melt DNA being unaffected.  相似文献   

11.
Cistus creticus ssp. creticus is an indigenous shrub of the Mediterranean area. The glandular trichomes covering its leaf surfaces secrete a resin called “ladanum”, which among others contains a number of specific labdane-type diterpenes that exhibit antibacterial and antifungal action as well as in vitro and in vivo cytotoxic and cytostatic activity against human cancer cell lines. In view of the properties and possible future exploitation of these metabolites, it was deemed necessary to study the geranylgeranyl diphosphate synthase enzyme (GGDPS, EC 2.5.1.30), a short chain prenyltransferase responsible for the synthesis of the precursor molecule of all diterpenes. In this work, we present the cloning, functional characterisation and expression profile at the gene and protein levels of two differentially expressed C. creticus full-length cDNAs, CcGGDPS1 and CcGGDPS2. Heterologous yeast cell expression system showed that these cDNAs exhibited GGDPS enzyme activity. Gene and protein expression analyses suggest that this enzyme is developmentally and tissue-regulated showing maximum expression in trichomes and smallest leaves (0.5–1.0 cm). This work is the first attempt to study the terpenoid biosynthesis at the molecular level in C. creticus ssp. creticus.  相似文献   

12.
1. 1. The development of thermotolerance has been shown to protect blowfly flight muscle mitochondrial function from damage resulting from an LD50 in vivo heat dose.
2. 2. The principal sites of the damage have been studied using specific inhibitors of the respiratory chain, rotenone and antimycin A, together with substrates that stimulate respiration through the different complexes.
3. 3. Complex I was identified as the primary site for heat damage. State III respiration was inhibited following the LD50 in vivo heat dose, and uncoupling with FCCP did not restore respiration to control levels, indicating that the respiratory enzymes were inactivated. The development of thermotolerance protected this site from heat damage.
4. 4. In contrast, G3-P stimulated respiration was the same in control, LD50 in vivo treated controls and LD50, in vivo treated thermotolerant mitochondria, and significantly higher than state III respiration of LD50 in vivo treated controls. This suggested that respiration through G3-P dehydrogenase, Co enzyme Q and Complex III is not damaged. However, as G3-P stimulated respiration of coupled mitochondria from LD50 in-vivo treated flies was markedly reduced (El-Wadawi and Bowler, 1995. J. exp. Biol. 198: 2413–2421), phosphorylation at complex III may be inhibited also.
5. 5. Ferrocyanide stimulated respiration through cytochrome c-Complex IV was also inhibited in LD50 in vivo treated flies, as compared with unheated control mitochondria. However, thermotolerance protected this site also from heat damage.
  相似文献   

13.
Under aerobic conditions, the enzyme γ-hexachlorocyclohexane dechlorinase (LinA) from Sphingomonas paucimobilis UT26 catalyses the elimination of chlorine atoms from the molecule of γ-hexachlorocyclohexane (γ-HCH) or lindane, a recalcitrant pesticide that is still widely used. In its native metabolic context, LinA starts the biodegradation process of lindane by transforming γ-HCH to 1,2,4 trichlorobenzene (TCB), a less persistent chemical. In an attempt to generate an improved version of this enzyme to be used in lindane bioremediation schemes, we have run an experimental evolution procedure on LinA, using Escherichia coli as the surrogate host. One round of random mutagenesis and subsequent screening for improved dechlorination in vivo sufficed to yield one mutant enzyme (LinAT10), bearing a single substitution C132R, that displayed a two-fold enhanced expression and three-fold enhanced solubility of the enzyme compared to the wild type protein. This resulted in a biological product with a six-fold increase in dechlorination ability when expressed in E. coli. The potential of this protein and its expression system for in situ bioremediation is discussed.  相似文献   

14.
The generation of large mutant libraries for in vitro enzyme evolution presents the challenge of effectively screening libraries of 104–107 mutants on the basis of simultaneously assaying their biocatalytic activity. In this review, we highlight the main steps involved in this process, describe the alternative approaches to address this challenge, survey the state-of-the-art technology and assess achievements already made. It is anticipated that, as a result of the expected accomplishment of further improvements in high-throughput screening that will allow routine screening of whole libraries, the number of useful new and improved enzymes derived through in vitro enzyme evolution will expand rapidly in the near future.  相似文献   

15.
Binding of [3H]flunitrazepam to benzodiazepine receptors in brain from several species, including human, was measured in vitro in the presence and absence of purine-metabolizing enzyme inhibitors. Incubation with potent inhibitors of either adenosine deaminase (2′-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl)-adenine) or guanine deaminase (5-amino-4-imidazole carboxamide) failed to alter [3H]flunitrazepam binding in homogenates of several different regions of human, rabbit, rat or guinea pig brain. These findings are in contrast to those of Norstrand et al. [Enzyme 29, 61–65 (1983)] who reported substantial alterations in [3H]flunitrazepam binding to human brain membranes in the presence of erythro-9-(2-hydroxy-3-nonyl)-adenine (increase) and 5-amino-4-imidazole carboxamide (decrease). In our studies, [3H]flunitrazepam binding was also unaltered in more anatomically intact brain sections following treatment with purine enzyme inhibitors. Furthermore, in vivo administration of erythro-9-(2-hydroxy-3-nonyl)-adenine to mice at a dose (200 mg/kg, i.p.) known to almost totally inhibit central adenosine deaminase activity also failed to alter brain [3H]flunitrazepam binding measured ex vivo, 30–120 min post injection.

While previous studies have shown that purines such as inosine interact with benzodiazepine receptors, our results raise some questions about the role of endogenous purines in regulating benzodiazepine receptors, at least in vitro and also acutely vivo following purine enzyme inhibitor administration.  相似文献   


16.
Acridine orange in daily doses of 1, 2 and 4 mg for 4 days was given to chicks averaging 50 gm in weight. Dosage was started 1, 2 and 3 days after infection with Plasmodium gallinaceum. Such doses were sufficient to stain the parasite in vivo, as shown by its bright fluorescence in UV light, but did not exhibit any antimalarial action. Staining of fresh blood samples from infected chicks with 0.01% acridine orange in Krebs-Ringer containing 0.1 M phosphate buffer (pH 6.0-6.2) resulted in differential fluorescence of the nucleic acids of the plasmodia, to show nuclear DNA bright green and cytoplasmic RNA orange-red. After optimum acid hydrolysis, as used for the Feulgen reaction, staining with 0.1% acridine orange produced intense red fluorescence of the nuclear DNA in the plasmodia. Nuclear DNA of the chick erythrocytes showed bright fluorescence both in vivo and in vitro.  相似文献   

17.
Investigators use both in vitro and in vivo models to better understand infectious disease processes. Both models are extremely useful in research, but there exists a significant gap in complexity between the highly controlled reductionist in vitro systems and the largely undefined, but relevant variability encompassing in vivo animal models. In an effort to understand how Salmonella initiates disease at the intestinal epithelium, in vitro models have served a useful purpose in allowing investigators to identify molecular mechanisms responsible for Salmonella invasion of host cells and stimulation of host inflammatory responses. Identification of these molecular mechanisms has generated hypotheses that are now being tested using in vivo models. Translating the in vitro findings into the context of an animal model and subsequently to human disease remains a difficult challenge for any disease process.  相似文献   

18.
Novel ribozymes produced by in vitro selection techniques provide insights into the possible mechanisms of protein synthesis evolution. The availability of such ribozymes also paves the way for experiments to explore the evolution of RNA–protein enzymes.  相似文献   

19.
黑色素是一种广泛存在于动物、植物、细菌及真菌中的生物色素,具有多种生物功能及良好的生物活性。黑木耳以“黑”出名,其富含的黑色素具有广阔开发应用价值。本研究旨在评价黑木耳黑色素对急性肝损伤的改善作用。首先应用傅里叶红外光谱初步对提取的黑木耳黑色素进行鉴定,再通过DPPH自由基及羟基自由基清除实验证实提取的黑木耳黑色素体外抗氧化能力,并进一步以四氯化碳致小鼠急性肝损伤为模型,通过检测血清酶指标、肝功指标的变化及病理切片情况,来评价黑木耳黑色素体内抗氧化及保肝效果。结果表明,提取的黑木耳黑色素具有黑色素特征的官能团结构和良好的体外抗氧化能力,对DPPH自由基和羟基(OH)自由基清除的EC50分别为0.0887mg/mL、2.2030mg/mL;动物体内实验中,与模型组对比,给药组(黑木耳黑色素)的小鼠血清中ALT、AST含量显著降低(P<0.01),肝脏中MDA含量显著降低(P<0.01)和SOD活性显著升高(P<0.01),并且肝细胞病理状态明显改善。本文报道了黑木耳黑色素在体内能有效改善四氯化碳诱导的小鼠肝损伤,为黑木耳的功能产品开发提供了新思路和研究基础。  相似文献   

20.
The mechanism of acetaldehyde detoxification in Drosophila melanogaster adults has been studied by comparing physiological in vitro and in vivo data. ADH+ and ADH flies, both lacking aldehyde dehydrogenase activity from ADH (ALDHADH, ALDH (ALDH) or both enzymes were exposed to acetaldehyde or ethanol, and the toxicity and internal accumulation of both compounds were determined. Acetaldehyde was extremely lethal for flies whose ALDH activity had been inhibited by cyanamide, though acetaldehyde was effectively detoxified by flies whose ALDHADH activity had been inhibited by acetone. After exposure to acetaldehyde, both acetaldehyde and ethanol rapidly accumulated in flies lacking ALDH activity, but not in flies lacking ALDHADH activity. However, ethanol but not acetaldehyde quickly accumulated in flies lacking ALDH activity after exposure to ethanol. Our results provide in vivo evidence that, as opposed to larvae, in D. melanogaster adults acetaldehyde is mainly oxidized into acetate by means of ALDH enzymes. However, the reducing activity of the ADH enzyme, which transforms acetaldehyde into ethanol, also plays an essential role in the detoxification of acetaldehyde. Differences in ALDH activity might be important to explain the differences in ethanol tolerance found in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号