首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have analyzed the abundance of SUMO-conjugated species during the cell cycle in Xenopus egg extracts. The predominant SUMO conjugation products associated with mitotic chromosomes arose from SUMO conjugation of topoisomerase II. Topoisomerase II was modified exclusively by SUMO-2/3 during mitosis under normal circumstances, although we observed conjugation of topoisomerase II to SUMO-1 in extracts with exogenous SUMO-1 protein. Inhibition of SUMO modification by a dominant-negative mutant of the SUMO-conjugating enzyme Ubc9 (dnUbc9) did not detectably alter topoisomerase II activity, but it did increase the amount of unmodified topoisomerase II retained on mitotic chromosomes after high salt washing. dnUbc9 did not disrupt the assembly of condensed mitotic chromosomes or block progression of extracts through mitosis, but it did block the dissociation of sister chromatids at the metaphase-anaphase transition. Together, our results suggest that SUMO conjugation is important for chromosome segregation in metazoan systems, and that mobilization of topoisomerase II from mitotic chromatin may be a key target of this modification.  相似文献   

2.
SUMO conjugation of cellular proteins is essential for proper progression of mitosis. PIASy, a SUMO E3 ligase, is required for mitotic SUMOylation of chromosomal proteins, yet the regulatory mechanism behind the PIASy-dependent SUMOylation during mitosis has not been determined. Using a series of truncated PIASy proteins, we have found that the N terminus of PIASy is not required for SUMO modification in vitro but is essential for mitotic SUMOylation in Xenopus egg extracts. We demonstrate that swapping the N terminus of PIASy protein with the corresponding region of other PIAS family members abolishes chromosomal binding and mitotic SUMOylation. We further show that the N-terminal domain of PIASy is sufficient for centromeric localization. We identified that the N-terminal domain of PIASy interacts with the Rod/Zw10 complex, and immunofluorescence further reveals that PIASy colocalizes with Rod/Zw10 in the centromeric region. We show that the Rod/Zw10 complex interacts with the first 47 residues of PIASy which were particularly important for mitotic SUMOylation. Finally, we show that depletion of Rod compromises the centromeric localization of PIASy and SUMO2/3 in mitosis. Together, we demonstrate a fundamental mechanism of PIASy to localize in the centromeric region of chromosome to execute centromeric SUMOylation during mitosis.  相似文献   

3.
Identification of a substrate recognition site on Ubc9   总被引:1,自引:0,他引:1  
Human Ubc9 is homologous to ubiquitin-conjugating enzymes. However, instead of conjugating ubiquitin, it conjugates a ubiquitin homologue, small ubiquitin-like modifier 1 (SUMO-1), also known as UBL1, GMP1, SMTP3, PIC1, and sentrin. The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin-activating enzymes (E1), the three-dimensional structures of the ubiquitin-conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of substrates with Ubc9 has been studied using NMR spectroscopy. Peptides with sequences that correspond to those of the SUMO-1 conjugation sites from p53 and c-Jun both bind to a surface adjacent to the active site Cys93 of human Ubc9, which has been previously shown to include residues that demonstrate the most significant dynamics on the microsecond to millisecond time scale. Mutations in this region, Q126A, Q130A, A131D, E132A, Y134A, and T135A, were constructed to evaluate the role of these residues in SUMO-1 conjugation. These alterations have significant effects on the conjugation of SUMO-1 with the target proteins p53, E1B, and promyelocytic leukemia protein and define a substrate binding site on Ubc9. Furthermore, the SUMO-1 conjugation site of p53 does not form any defined secondary structure when either free or bound to Ubc9. This suggests that a defined secondary structure at SUMO-1 conjugation sites in target proteins is not necessary for recognition and conjugation by the SUMO-1 pathway.  相似文献   

4.
5.
Conjugation of the small ubiquitin-like modifier SUMO-1/SMT3C/Sentrin-1 to proteins in vitro is dependent on a heterodimeric E1 (SAE1/SAE2) and an E2 (Ubc9). Although SUMO-2/SMT3A/Sentrin-3 and SUMO-3/SMT3B/Sentrin-2 share 50% sequence identity with SUMO-1, they are functionally distinct. Inspection of the SUMO-2 and SUMO-3 sequences indicates that they both contain the sequence psiKXE, which represents the consensus SUMO modification site. As a consequence SAE1/SAE2 and Ubc9 catalyze the formation of polymeric chains of SUMO-2 and SUMO-3 on protein substrates in vitro, and SUMO-2 chains are detected in vivo. The ability to form polymeric chains is not shared by SUMO-1, and although all SUMO species use the same conjugation machinery, modification by SUMO-1 and SUMO-2/-3 may have distinct functional consequences.  相似文献   

6.
Ubc9 is an enzyme involved in the conjugation of SUMO-1 (small ubiquitin related modifier 1) to target proteins. The SUMO-1 conjugation system is well conserved from yeasts to higher eukaryotes, but many SUMO-1 target proteins reported recently in higher eukaryotic cells, including IkappaBalpha, MDM2, p53, and PML, are not present in yeasts. To determine the physiological roles of SUMO-1 conjugation in higher eukaryotic cells, we constructed a conditional UBC9 mutant of chicken DT40 cells containing the UBC9 transgene under control of a tetracycline-repressible promoter and characterized their loss of function phenotypes. Ubc9 disappeared 3 days after the addition of tetracycline and the increase in viable cell number stopped 4 days after the addition of drug. In contrast to the cases of ubc9 mutants of budding and fission yeasts, which show defects in progression of G2 or early M phase and in chromosome segregation, respectively, we did not observe accumulation of cells in G2/M phase or a considerable increase in the frequency of chromosome missegregation upon depletion of Ubc9 but we did observe an increase in the number of cells containing multiple nuclei, indicating defects in cytokinesis. A considerable portion of the Ubc9-depleted cell population was committed to apoptosis without accumulating in a specific phase of the cell cycle, suggesting that chromosome damages are accumulated in Ubc9-depleted cells, and apoptosis is triggered without activating checkpoint mechanisms under conditions of SUMO-1 conjugation system impairment.  相似文献   

7.
The conjugation of small ubiquitin-like modifiers SUMO-1, SUMO-2 and SUMO-3 onto target proteins requires the concerted action of the specific E1-activating enzyme SAE1/SAE2, the E2-conjugating enzyme Ubc9, and an E3-like SUMO ligase. NMR chemical shift perturbation was used to identify the surface of Ubc9 that interacts with the SUMO ligase RanBP2. Unlike known ubiquitin E2-E3 interactions, RanBP2 binds to the beta-sheet of Ubc9. Mutational disruption of Ubc9-RanBP2 binding affected SUMO-2 but not SUMO-1 conjugation to Sp100 and to a newly identified RanBP2 substrate, PML. RanBP2 contains a binding site specific for SUMO-1 but not SUMO-2, indicating that a Ubc9-SUMO-1 thioester could be recruited to RanBP2 via SUMO-1 in the absence of strong binding between Ubc9 and RanBP2. Thus we show that E2-E3 interactions are not conserved across the ubiquitin-like protein superfamily and identify a RanBP2-dependent mechanism for SUMO paralog-specific conjugation.  相似文献   

8.
Tatham MH  Kim S  Yu B  Jaffray E  Song J  Zheng J  Rodriguez MS  Hay RT  Chen Y 《Biochemistry》2003,42(33):9959-9969
Covalent posttranslational modification of target proteins with ubiquitin and ubiquitin-like proteins regulates many important cellular processes. However, the molecular mechanisms by which these proteins are activated and conjugated to substrates has yet to be fully understood. NMR studies have shown that the ubiquitin-like proteins SUMO-1, -2, and -3 interact with the same N-terminal region of the E2 conjugating enzyme Ubc9 with similar affinities. This is correlated to their almost identical utilization by Ubc9 in the SUMO conjugation pathway. To investigate the functional significance of this interaction, site-directed mutagenesis was used to alter residues in the SUMO binding surface of Ubc9, and the effect of the amino acid substitutions on binding and conjugation to SUMO-1 and target protein RanGAP1 was investigated by isothermal titration calorimetry and biochemical analysis. R13A/K14A and R17A/K18A mutations in Ubc9 disrupted the interaction with SUMO-1 but did not completely abolish the interaction with E1. While these Ubc9 mutants displayed a significantly reduced efficiency in the transfer of SUMO-1 from E1 to E2, their ability to recognize substrate and transfer SUMO-1 from E2 to the target protein was unaffected. These results suggest that the noncovalent binding site of SUMO-1 on Ubc9, although distant from the active site, is important for the transfer of SUMO-1 from the E1 to the E2. The conservation of E2 enzymes across the ubiquitin and ubiquitin-like protein pathways indicates that analogous N-terminal sites of E2 enzymes are likely to have similar roles in general.  相似文献   

9.
Tatham MH  Chen Y  Hay RT 《Biochemistry》2003,42(11):3168-3179
The small ubiquitin-like modifier SUMO-1 is covalently attached to lysine residues on target proteins by a specific conjugation pathway involving the E1 enzyme SAE1/SAE2 and the E2 enzyme Ubc9. In an ATP-dependent manner, the C-terminus of SUMO-1 forms consecutive thiolester bonds with cysteine residues in the SAE2 subunit and Ubc9, before the Ubc9.SUMO-1 thiolester complex catalyzes the formation of an isopeptide bond between SUMO-1 and the epsilon-amino group of the target lysine residue on the protein substrate. The SUMO-1 conjugation pathway bears many similarities with that of ubiquitin and other ubiquitin-like protein modifiers (Ubls), and because of its production of a singly conjugated substrate and the lack of absolute requirement in vitro for E3 enzymes, the SUMO-1/Ubc9 system is a good model for the analysis of protein conjugation pathways that share this basic chemistry. Here we describe methods of both steady-state and half-reaction kinetic analysis of Ubc9, and use these techniques to determine the role of two residues, Asp(100) and Lys(101) of Ubc9 which are not found in E2 enzymes from other protein conjugation pathways. These residues are found close to the active site Cys in the tertiary structure of Ubc9, and although they are shown to inhibit the transesterification reaction from SAE1/SAE2, they are important for substrate recognition in the context of the thiolester complex with SUMO-1.  相似文献   

10.
11.
12.
Lee YJ  Mou Y  Maric D  Klimanis D  Auh S  Hallenbeck JM 《PloS one》2011,6(10):e25852
We have previously shown that a massive increase in global SUMOylation occurs during torpor in ground squirrels, and that overexpression of Ubc9 and/or SUMO-1 in cell lines and cortical neurons protects against oxygen and glucose deprivation. To examine whether increased global SUMOylation protects against ischemic brain damage, we have generated transgenic mice in which Ubc9 is expressed strongly in all tissues under the chicken β-actin promoter. Ubc9 expression levels in 10 founder lines ranged from 2 to 30 times the endogenous level, and lines that expressed Ubc9 at modestly increased levels showed robust resistance to brain ischemia compared to wild type mice. The infarction size was inversely correlated with the Ubc9 expression levels for up to five times the endogenous level. Although further increases showed no additional benefit, the Ubc9 expression level was highly correlated with global SUMO-1 conjugation levels (and SUMO-2,3 levels to a lesser extent) up to a five-fold Ubc9 increase. Most importantly, there were striking reciprocal relationships between SUMO-1 (and SUMO-2,3) conjugation levels and cerebral infarction volumes among all tested animals, suggesting that the limit in cytoprotection by global SUMOylation remains undefined. These results support efforts to further augment global protein SUMOylation in brain ischemia.  相似文献   

13.
14.
15.
The SUMO E2 Ubc9 serves as a lynchpin in the SUMO conjugation pathway, interacting with the SUMO E1 during activation, with thioester linked SUMO after E1 transfer and with the substrate and SUMO E3 ligases during conjugation. Here, we describe the structure determination of a non-covalent complex between human Ubc9 and SUMO-1 at 2.4 A resolution. Non-covalent interactions between Ubc9 and SUMO are conserved in human and yeast insomuch as human Ubc9 interacts with each of the human SUMO isoforms, and yeast Ubc9 interacts with Smt3, the yeast SUMO ortholog. Structural comparisons reveal similarities to several other non-covalent complexes in the ubiquitin pathway, suggesting that the non-covalent Ubc9-SUMO interface may be important for poly-SUMO chain formation, for E2 recruitment to SUMO conjugated substrates, or for mediating E2 interactions with either E1 or E3 ligases. Biochemical analysis suggests that this surface is less important for E1 activation or di-SUMO-2 formation, but more important for E3 interactions and for poly-SUMO chain formation when the chain exceeds more than two SUMO proteins.  相似文献   

16.
SUMO-1 is an ubiquitin-related protein that is covalently conjugated to a diverse assortment of proteins. The consequences of SUMO-1 modification include the regulation of protein-protein interactions, protein-DNA interactions, and protein subcellular localization. At present, very little is understood about the specific mechanisms that govern the recognition of proteins as substrates for SUMO-1 modification. However, many of the proteins that are modified by SUMO-1 interact directly with the SUMO-1 conjugating enzyme, Ubc9. These interactions suggest that Ubc9 binding may play an important role in substrate recognition as well as in substrate modification. The SUMO-1 consensus sequence (SUMO-1-CS) is a motif of conserved residues surrounding the modified lysine residue of most SUMO-1 substrates. This motif conforms to the sequence "PsiKXE," where Psi is a large hydrophobic residue, K is the lysine to which SUMO-1 is conjugated, X is any amino acid, and E is glutamic acid. In this study, we demonstrate that the SUMO-1-CS is a major determinant of Ubc9 binding and SUMO-1 modification. Mutating residues in the SUMO-1-CS abolishes both Ubc9 binding and substrate modification. These findings have important implications for how SUMO-1 substrates are recognized and for how SUMO-1 is ultimately transferred to specific lysine residues on these substrates.  相似文献   

17.
Ding H  Yang Y  Zhang J  Wu J  Liu H  Shi Y 《Proteins》2005,61(4):1050-1058
The interaction between small ubiquitin-related modifier SUMO and its conjugating-enzyme Ubc9 (E2) is an essential step in SUMO conjugation cascade. However, an experimental structure of such a transient complex is still unavailable. Here, a structural model of SUMO-3-Ubc9 complex was obtained with HADDOCK, combining NMR chemical shift mapping information. Docking calculations were performed using SUMO-3 and Ubc9 structures as input. The resulting complex reveals that the complementary surface electrostatic potentials contribute dominantly to the specific interaction. At the interface, similar numbers of oppositely-charged conserved residues are identified on the respective binding partners. Hydrogen bonds are formed in the vicinity of the interface to stabilize the complex. Comparison of the structure of SUMO-3-Ubc9 complex generated by HADDOCK and the experimental structures in free form indicates that SUMO-3 and Ubc9 maintain their respective fold as a whole after docking. However, the N-terminal helix alpha1 and its subsequent L1 loop of Ubc9 experience sizeable changes upon complex formation. They cooperatively move towards the hydrophilic side of the beta-sheet of SUMO-3. Our observations are consistent with the data from previous Ubc9 mutational analysis and conformational flexibility studies. Together, we have proposed that the SUMO-3-Ubc9 interaction is strongly electrostatically driven and the N terminus of Ubc9 shifts to SUMO-3 to facilitate the interaction. The NMR-based structural model, which provides considerable insights into the molecular basis of the specific SUMO-E2 recognition and interaction, implicates the general interaction mode between SUMO-3 and Ubc9 homologues from yeast to humans.  相似文献   

18.
19.
Ding H  Xu Y  Chen Q  Dai H  Tang Y  Wu J  Shi Y 《Biochemistry》2005,44(8):2790-2799
Small ubiquitin-related modifier SUMO-3 is a member of a growing family of ubiquitin-like proteins (Ubls). So far, four isoforms of SUMO have been identified in humans. It is generally known that SUMO modification regulates protein localization and activity. Previous structure and function studies have been mainly focused on SUMO-1. The sequence of SUMO-3 is 46% identical with that of SUMO-1; nevertheless, functional heterogeneity has been found between the two homologues. Here we report the solution structure of SUMO-3 C47S (residues 14-92) featuring the beta-beta-alpha-beta-beta-alpha-beta ubiquitin fold. Structural comparison shows that SUMO-3 C47S resembles ubiquitin more than SUMO-1. On the helix-sheet interface, a strong hydrophobic interaction contributes to formation of the globular and compact fold. A Gly-Gly motif at the C-terminal tail, extending away from the core structure, is accessible to enzymes and substrates. In vivo, SUMO modification proceeds via a multistep pathway, and Ubc9 plays an indispensable role as the SUMO conjugating enzyme (E2) in this process. To develop a better understanding of SUMO-3 conjugation, the Ubc9 binding surface on SUMO-3 C47S has been detected by chemical shift perturbation using NMR spectroscopy. The binding site mainly resides on the hydrophilic side of the beta-sheet. Negatively charged and hydrophobic residues of this region are highly or moderately conserved among SUMO family members. Notably, the negatively charged surface of SUMO-3 C47S is highly complementary in its electrostatic potentials and hydrophobicity to the positively charged surface of Ubc9. This work indicates dissimilarities between SUMO-3 and SUMO-1 in tertiary structure and provides insight into the specific interactions of SUMO-3 with its modifying enzyme.  相似文献   

20.
SUMOs are small ubiquitin-related polypeptides that are reversibly conjugated to many nuclear proteins. Although the number of identified substrates has grown rapidly, relatively little is still understood about when, where, and why most proteins are modified by SUMO. Here, we demonstrate that enzymes involved in the SUMO modification and demodification of proteins are components of the nuclear pore complex (NPC). We show that SENP2, a SUMO protease that is able to demodify both SUMO-1 and SUMO-2 or SUMO-3 protein conjugates, localizes to the nucleoplasmic face of the NPC. The unique amino-terminal domain of SENP2 interacts with the FG repeat domain of Nup153, indicating that SENP2 associates with the nucleoplasmic basket of the NPC. We also investigated the localization of the SUMO conjugating enzyme, Ubc9. Using immunogold labeling of isolated nuclear envelopes, we found that Ubc9 localizes to both the cytoplasmic and the nucleoplasmic filaments of the NPC. In vitro binding studies revealed that Ubc9 and SUMO-1-modified RanGAP1 bind synergistically to form a trimeric complex with a component of the cytoplasmic filaments of the NPC, Nup358. Our results indicate that both SUMO modification and demodification of proteins may occur at the NPC and suggest a connection between the SUMO modification pathway and nucleocytoplasmic transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号