首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-like growth factors (IGF-I/-II) are not only the endocrine mediators of growth hormone-induced metabolic and anabolic actions but also polypeptides that act in a paracrine and autocrine manner to regulate cell growth, differentiation, apoptosis and transformation. The IGF system is a complex network comprised of two growth factors (IGF-I and -II), cell surface receptors (IGF-IR and -IIR), six specific high affinity binding proteins (IGFBP-I to IGFBP-6), IGFBP proteases as well as several other IGFBP-interacting molecules, which regulate and propagate IGF actions in several tissues. Besides their broad-spectrum physiological and pathophysiological functions, recent evidence suggests even a link between IGFs and different malignancies.  相似文献   

2.
The insulin-like growth factors (IGFs) I and II exert pleiotropic effects on diverse cell types through interaction with specific high affinity cell surface receptors and with locally produced binding proteins. In skeletal muscle and in myoblast cell lines, the functions of IGF-I and -II are complex. Both growth factors appear capable of stimulating cellular proliferation and differentiation, as well as exerting insulin-like effects on intermediary metabolism. We have demonstrated recently that the expression of IGF-II and its receptor is induced during the terminal differentiation of the myoblast cell line, C2, and have suggested that IGF-II may be an autocrine growth factor in these cells (Tollefsen, S.E., Sadow, J.L., and Rotwein, P. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1543-1547). We now have examined this cell line for expression of other components involved in IGF signaling. The synthesis of IGF-I is low during myoblast proliferation; IGF-I mRNA can be detected only through use of a sensitive solution hybridization assay. Typical IGF-I receptors can be measured in myoblasts, whereas IGF binding proteins cannot be detected in proliferating cells or in conditioned culture medium. During myogenic differentiation, IGF-I mRNA levels increase transiently by 6-10-fold within 48-72 h. The expression of IGF-I mRNA is accompanied by a 2.5-fold accumulation of IGF-I in the culture medium. IGF-I receptors also increase transiently, doubling by 48 h after the onset of differentiation. By contrast, secretion of a Mr 29,000 IGF binding protein is induced 30-fold to 100 ng/ml within 16 h and continues to increase throughout differentiation. These studies demonstrate that several components critical to IGF action are produced in a fusing skeletal muscle cell line in a differentiation-dependent manner and suggest that both IGF-I and IGF-II may be autocrine factors for muscle.  相似文献   

3.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

4.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Sheep thyroid cells cultured in serum-free medium were used to study the biologic activity, binding, and production of the insulin-like growth factors (IGFs). IGF-I, IGF-II, and insulin stimulated thyroid cell division. Abundant, specific IGF receptors on sheep thyroid cell membranes were identified by binding displacement studies. Maximal specific binding of [125I]-labeled IGF-I and IGF-II to 25 micrograms of membrane protein averaged 21% and 27% respectively. The presence of type I and type II IGF receptors was confirmed by polyacrylamide gel electrophoresis of [125I]IGFs covalently cross-linked to cell membranes. Under reducing conditions, [125I]IGF-I bound to a moiety of approximate Mr = 135,000 and [125I]IGF-II to a moiety of approximate Mr = 260,000. Cross-linking of [125I]IGF-I to medium conditioned by thyroid cells indicated the presence of four IGF binding proteins with apparent Mr = 34,000, 26,000, 19,000 and 14,000. Thyroid cells also secreted IGF-I and II into the medium. IGF synthesis was enhanced consistently by recombinant growth hormone. These data indicate that sheep thyroid cells are a site for IGF action, binding, and production and provide further evidence that IGFs may modulate thyroid gland growth in an autocrine or paracrine manner.  相似文献   

6.
Insulin-like growth factor (IGF)-I and -II have been cloned from a number of teleost species, but their cellular actions in fish are poorly defined. In this study, we show that both IGF-I and -II stimulated zebrafish embryonic cell proliferation and DNA synthesis in a concentration-dependent manner, whereas insulin had little mitogenic activity. Affinity cross-linking and immunoblotting studies revealed the presence of IGF receptors with the characteristics of the mammalian type I IGF receptor. Competitive binding assay results indicated that the binding affinities of the zebrafish IGF-I receptors to IGF-I, IGF-II, and insulin are 1.9, 2.6, and >190 nM, indicating that IGF-I and -II bind to the IGF-I receptor(s) with approximately equal high affinity. To further investigate the cellular mechanism of IGF actions, we have studied the effects of IGFs on two major signal transduction pathways: mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3 kinase). IGFs activated MAPK in zebrafish embryonic cells in a dose-dependent manner. This activation occurred within 5 min of IGF-I stimulation and disappeared after 1 h. IGF-I also caused a concentration-dependent activation of protein kinase B, a downstream target of PI3 kinase, this activation being sustained for several hours. Inhibition of MAPK activation by the MAPK kinase inhibitor PD-98059 inhibited the IGF-I-stimulated DNA synthesis. Similarly, use of the PI3 kinase inhibitor LY-294002 also inhibited IGF-I-stimulated DNA synthesis. When both the MAPK and PI3 kinase pathways were inhibited using a combination of these compounds, the IGF-I-stimulated DNA synthesis was completely negated. These results indicate that both IGF-I and -II are potent mitogens for zebrafish embryonic cells and that activation of both the MAPK and PI3 kinase-signaling pathways is required for the mitogenic action of IGFs in zebrafish embryonic cells.  相似文献   

7.
The insulin-like growth factors I and II (IGF-I, IGF-II), their receptors, and high affinity binding proteins (IGFBPs) represent a family of cellular modulators that play essential roles in the development and differentiation of cells and tissues including the skeleton. Recently, the human osteosarcoma cell line HOS 58 cells were used as an in vitro model of osteoblast differentiation characterized by (i) a rapid proliferation rate in low-density cells that decreased continuously with time of culture and (ii) an increasing secretion of matrix proteins during their in vitro differentiation. In the present paper, HOS 58 cells with low cell density at early time points of the in vitro differentiation (i) displayed a low expression of IGF-I and -II; (ii) synthesized low levels of IGFBP-2, -3, -4, and -5, but (iii) showed high expression levels of both the type I and II IGF receptors. During the in vitro differentiation of HOS 58 cells, IGF-I and -II expressions increased continuously in parallel with an upregulation of IGFBP-2, -3, -4, and -5 whereas the IGF-I receptor and IGF-II/M6P receptor mRNA were downregulated. In conclusion, the high proliferative activity in low cell density HOS 58 cells was associated with high mRNA levels of the IGF-IR, but low concentrations of IGFBP-2. The rate of proliferation of HOS 58 cells continuously decreased during cultivation in parallel with a decline in IGF-IR expression, but increase of mitoinhibitory IGFBP-2. These data are indicative for a role of the IGF axis during the in vitro differentiation of HOS 58 cells.  相似文献   

8.
IGF-I-dependent decreases in endogenous GH mRNA expression were studied in individual rat MtT/S somatotroph cells using in situ hybridization. It was first shown that increasing IGF-I concentrations (0-90 nM) decreased GH mRNA levels in a ultrasensitive manner when averaged over the entire population, such that the decrease occurred over a narrow range of IGF-I concentration with an EC50 of 7.1 nM. The degree of ultrasensitivity of the population average was expressed by calculating the Hill coefficient (nA), which had a value of -2.0. GH mRNA levels in individual dispersed cells from these cultures were then measured. These results were first summed for all cells to show that the average response of the population remained ultrasensitive (nA = -2.6, EC50 = 8.1 nM). Then, parameters for individual cells of the population were calculated using mathematical modeling of the distribution of individual cell GH mRNA levels after treatment with 0-90 nM IGF-I. Solution of the data from the individual cells yielded a Hill coefficient (nI = -0.65) and a heterogeneity coefficient (mI = -1.2) indicative of individual cell responsiveness to IGF-I that was not ultrasensitive and very heterogeneous. These results suggested that ultrasensitivity in the population may likely be caused by an extracellular mechanism regulating IGF-I concentrations, such as IGF binding proteins. Increasing concentrations of long (Arg)3IGF-1, an analog that binds the IGF type-1 receptor but not IGF binding proteins, showed a linear inhibition of GH mRNA levels. Treatment with IGF binding protein ligand inhibitor, an IGF-I analog that binds to IGF binding proteins but not the IGF type-1 receptor, decreased GH mRNA levels in the absence of exogenous IGF-I. Thus, IGF binding proteins provide the extracellular sequestration of IGF-I necessary for the precise and ultrasensitive regulation of GH mRNA levels in the entire cell population, although expression within individual cells is regulated in a graded fashion.  相似文献   

9.
Insulin-like growth factor (IGF)-binding proteins (BPs) bind IGF-I and IGF-II with high affinity. They are present in extracellular fluids and modulate the interactions of their ligands with the type 1 IGF cell surface receptor. These studies utilized IGF-I analogs that have reduced binding affinity for either the type 1 IGF receptor or binding proteins to study the ligand specificity of IGF-BP-1 and the role of IGF-BP-1 in modulating the biological activity of IGF-I. The data indicate that the regions of IGF-I which are responsible for binding to IGF-BP-1 and to human serum-binding proteins are distinct but overlapping and are clearly distinct from the type I receptor binding sites. In the absence of exogenously added IGF-BP-1, the analogs with reduced affinity for IGF-BP-1 are more potent than IGF-I in stimulating DNA synthesis by porcine aortic smooth muscle cells. In contrast, when cells are concomitantly exposed to IGF-BP-1, two of the analogs with reduced affinity for binding protein give only 40-65% of the maximal IGF-I response. [Leu24, 1-62]IGF-I, which has a 100-fold reduced affinity for the type 1 IGF receptor, gave a value that was 62% of the maximal IGF-BP-1 potentiated response. A second biological response, that of stimulating binding protein secretion by IGF-I, was also examined. [Leu24, 1-62]IGF-I is more potent than IGF-I whereas the activity of the analogs with lower affinity for IGF-BP-1 is significantly reduced. Thus, the ability to activate DNA synthesis and binding protein secretion maximally in the presence of IGF-BP-1 is dependent on the affinity of IGFs for both type 1 receptors and binding proteins.  相似文献   

10.
Insulin-like growth factor (IGF)-binding proteins (IGFBPs) either inhibit or enhance IGF-stimulated cellular effects. While inhibition occurs by sequestration of IGF from cell-surface receptors, the exact mechanism of IGF-enhancement remains undefined. Human osteoblast-like bone cells in culture secrete several IGF-binding proteins, one of which we have previously identified as IGFBP-5. In this study we purified a 23-kDa IGFBP-5 from cultures of human osteoblast-like cells using ligand affinity chromatography and reversed-phase high performance liquid chromatography and tested its bioactivity in serum-free cultures of normal mouse osteoblast-like cells. Binding studies with radioiodinated IGF showed similar and relatively low affinities for IGF-I and IGF-II consistent with a carboxyl truncated IGF-binding protein. Mitogenic assays demonstrated that the binding protein, when coincubated with IGF-I or -II, enhanced mitogenesis. This enhancement was unique from other binding proteins in not requiring a preincubation period or serum co-factors. Furthermore, the osteoblast-derived IGFBP-5 stimulated mitogenesis in the absence of exogenous or endogenous IGF. Using radioiodinated IGFBP-5 we found that the binding protein could associate with the osteoblast surface, an effect which did not require IGF nor an interaction with IGF receptors. We suggest that osteoblast-derived IGFBP-5 may stimulate osteoblast mitogenesis in at least two ways, by association with IGF and by a second pathway that is independent of IGF receptor activation.  相似文献   

11.
IGF-I and IGF-II are single-chain polypeptide growth factors that regulate pleiotropic cellular responses. We have characterized the effect of recombinant IGF proteins, as well as third-generation adenoviral vectors encoding either IGF-I or IGF-II genes, on cardiomyocyte apoptosis and on angiogenesis. We found that endothelial cells cultured in the presence of the extracellular protein laminin exhibit a robust response to IGF-I and -II proteins via enhanced cell migration and angiogenic outgrowth. Furthermore, IGF vectors greatly enhanced neovascularization in an in vivo Matrigel model. Transduction of cardiomyocytes with the IGF adenoviral vectors resulted in a dose- and time-dependent increase in the expression of IGF-I or IGF-II protein. This correlated with abrogation of apoptosis induced by ischemia-reoxygenation, ceramide, or heat shock with optimal inhibition of approximately 80%. We conclude that gene transfer of IGF-I and IGF-II is a plausible strategy for the local delivery of IGFs to treat ischemic heart disease and heart failure by stimulating angiogenesis and protecting cardiomyocytes from cell death.  相似文献   

12.
13.
Insulin-like growth factor-I (IGF-I) stimulated the phosphorylation of cytoskeletal 350-kDa and 300-kDa proteins which were immunoprecipitated with antibodies against brain high molecular weight microtubule-associated proteins in quiescent rat 3Y1 cells. The data on the effective concentrations of IGF-I and 125I-labeled IGF-I binding indicated that type I IGF receptors mediate this IGF-I effect. Platelet-derived growth factor (PDGF) as well as phorbol ester (TPA) also stimulated the phosphorylation of these proteins. These proteins, whether immunoprecipitated from cells stimulated by insulin, IGF-I, TPA, PDGF, or epidermal growth factor, produced very similar phosphopeptide mapping patterns irrespective of the stimulant. The results suggest the possibility that these growth factors and phorbol esters may activate a common protein kinase which is responsible for the phosphorylation of the 350-kDa and 300-kDa proteins in cells.  相似文献   

14.
Previous studies have implicated insulin-like growth factors I and II (IGF-I and -II), in the regulation of ovarian function. The present study investigated the localization of mRNA encoding IGF-I and -II and the type 1 IGF receptor using in situ hybridization to determine further the roles of the IGFs within the bovine corpus luteum at precise stages of the oestrous cycle. Luteal expression of mRNA encoding IGF-I and -II and the type 1 IGF receptor was detected throughout the oestrous cycle. The expression of IGF-I mRNAvaried significantly during the oestrous cycle. IGF-I mRNA concentrations were significantly higher on day 15 than on day 10, and IGF-I mRNA in the regressing corpus luteum at 48 h after administration of exogenous prostaglandin was significantly greater than in the early or mid-luteal phase (days 5 and 10). In contrast, there was no significant effect of day of the oestrous cycle on expression of mRNA for IGF-II and the type 1 IGF receptor in the corpus luteum. Expression of IGF-II mRNA was localized to a subset of steroidogenic luteal cells and was also associated with cells of the luteal vasculature. mRNA encoding the type 1 IGF receptor was widely expressed in a pattern indicative of expression in large and small luteal cells. These data demonstrate that the bovine corpus luteum is a site of IGF production and reception throughout the luteal phase. Furthermore, this study highlights the potential of IGF-II in addition to IGF-I in the autocrine and paracrine regulation of luteal function.  相似文献   

15.
16.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.  相似文献   

17.
Fetal growth restriction (FGR) increases the risk of perinatal complications and predisposes the infant to developing metabolic, cardiovascular, and neurological diseases in childhood and adulthood. The pathophysiology underlying FGR remains poorly understood and there is no specific treatment available. Biomarkers for early detection are also lacking. The insulin-like growth factor (IGF) system is an important regulator of fetal growth. IGF-I is the primary regulator of fetal growth, and fetal circulating levels of IGF-I are decreased in FGR. IGF-I activity is influenced by a family of IGF binding proteins (IGFBPs), which bind to IGF-I and decrease its bioavailability. During fetal development the predominant IGF-I binding protein in fetal circulation is IGFBP-1, which is primarily secreted by the fetal liver. IGFBP-1 binds IGF-I and thereby inhibits its bioactivity. Fetal circulating levels of IGF-I are decreased and concentrations of IGFBP-1 are increased in FGR. Phosphorylation of human IGFBP-1 at specific sites markedly increases its binding affinity for IGF-I, further limiting IGF-I bioactivity. Recent experimental evidence suggests that IGFBP-1 phosphorylation is markedly increased in the circulation of FGR fetuses suggesting an important role of IGFBP-1 phosphorylation in the regulation of fetal growth. Understanding of the significance of site-specific IGFBP-1 phosphorylation and how it is regulated to contribute to fetal growth will be an important step in designing strategies for preventing, managing, and/or treating FGR. Furthermore, IGFBP-1 hyperphosphorylation at unique sites may serve as a valuable biomarker for FGR.  相似文献   

18.
19.
The proliferative action of insulin-like growth factors (IGF-I and -II) is mediated via the type I IGF receptor (IGF-IR) and is modulated by their association with high affinity binding proteins, IGFBP-1 to -6. We recently found that, in addition to its ability to bind IGFs, IGFBP-3 also inhibits IGF-IR activation independently of IGF binding and without interacting directly with IGF-IR. Here, we show that IGFBP-3 is capable of blocking the signal triggered by IGFs. Breast carcinoma-derived cells (MCF-7) were stimulated by des(1-3)IGF-I or [Gln(3),Ala(4),Tyr(15),Leu(16)]IGF-I, two IGF analogues with intact affinity for IGF-IR, but with weak or virtually no affinity for IGFBPs, then incubated with IGFBP-3. The activated IGF-IR was desensitized through reversal of its autophosphorylation, following which both phosphatidylinositol 3-kinase and p42(MAPK) activities were depressed. Direct measurement of phosphotyrosine phosphatase activity and reconstitution experiments using tyrosine-phosphorylated insulin receptor substrate-1 (IRS-1) indicated that IGFBP-3 activated a phosphotyrosine phosphatase (PTPase). This action appeared to be peculiar to IGFBP-3 among the IGFBPs, since neither IGFBP-1 nor IGFBP-5 (structurally the closest to IGFBP-3), had any such effect. Several cell lines derived from normal or tumor cells responsive to IGF-I were used to show that IGFBP-3-stimulated PTPase is cell type-specific. Although the precise nature of the phosphatase remains to be determined, the results of this study demonstrate that IGFBP-3 stimulates a phosphotyrosine phosphatase activity that down-regulates the IGF-I signaling pathway, suggesting a major role for IGFBP-3 in regulating cell proliferation.  相似文献   

20.
Increasing evidence strongly supports a role for insulin-like growth factor-I (IGF-I) in central nervous system (CNS) development. IGF-I, IGF-II, the type IIGF receptor (the cell surface tyrosine kinase receptor that mediates IGF signals), and some IGF binding proteins (IGFBPs; secreted proteins that modulate IGF actions) are expressed in many regions of the CNS beginningin utero. The expression pattern of IGF system proteins during brain growth suggests highly regulated and developmentally timed IGF actions on specific neural cell populations. IGF-I expression is predominantly in neurons and, in many brain regions, peaks in a fashion temporally coincident with periods in development when neuron progenitor proliferation and/or neuritic outgrowth occurs. In contrast, IGF-II expression is confined mainly to cells of mesenchymal and neural crest origin. While expression of type I IGF receptors appears ubiquitous, that of IGFBPs is characterized by regional and developmental specificity, and often occurs coordinately with peaks of IGF expression. In vitro IGF-I has been shown to stimulate the proliferation of neuron progenitors and/or the survival of neurons and oligodendrocytes, and in some cultured neurons, to stimulate function. Transgenic (Tg) mice that overexpress IGF-I in the brain exhibit postnatal brain overgrowth without anatomic abnormality (20–85% increases in weight, depending on the magnitude of expression). In contrast, Tg mice that exhibit ectopic brain expression of IGFBP-1, an inhibitor of IGF action when present in molar excess, manifest postnatal brain growth retardation, and mice with ablated IGF-I gene expression, accomplished by homologous recombination, have brains that are 60% of normal size as adults. Taken together, these in vivo studies indicate that IGF-I can influence the development of most, if not all, brain regions, and suggest that the cerebral cortex and cerebellum are especially sensitive to IGF-I actions. IGF-I’s growth-promoting in vivo actions result from its capacity to increase neuron number, at least in certain populations, and from its potent stimulation of myelination. These IGF-I actions, taken together with its neuroprotective effects following CNS and peripheral nerve injury, suggest that it may be of therapeutic benefit in a wide variety of disorders affecting the nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号