首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An overview on aspects of kinetics and properties of reactive drug metabolites in relation to mutagenesis.  相似文献   

2.
Oxygen radicals and reactive oxygen species in reproduction   总被引:10,自引:0,他引:10  
Free radicals and reactive oxygen species play a number of significant and diverse roles in reproductive biology. In common with other biological systems, mechanisms have evolved to minimize the damaging effects that these highly reactive molecules can have on reproductive integrity. Conversely, however, recent findings illustrate the constructive roles that oxygen radicals and reactive oxygen species play in a number of important junctures in the development of germ cells and the obligate endocrine support they receive for the successful propagation of the species. Specifically addressed in this review are some aspects of sperm development and action, the uterine environment, oocyte maturation and ovulation, and corpus luteum function and regression.  相似文献   

3.
Aortic rings, 4 mm in length, were obtained from rats and placed on isometric force transducers in oxygenated Krebs buffer. Following a period of stabilization, the cumulative dose response relationship to norepinephrine was assessed. The vessels were washed and allowed to return to baseline in Krebs buffer containing xanthine (0.5 mM). Xanthine oxidase (0.1 U/ml) was then added to the bath and vessels incubated for 30 min. The vessels were resuspended in Krebs buffer and cumulative dose-response curves to norepinephrine reevaluated. The results indicate that generation of reactive oxygen metabolites by xanthine/xanthine oxidase decreases the pD2 from 7.80 ± 0.04 to 7.40 ± 0.09 with the endothelium intact. Removal of the endothelium did not attenuate the contractile dysfunction, indicating that endothelial-derived metabolites were not mediating the loss of vasoconstrictor effectiveness. Maximal tension development did not differ between normal and oxidized vessel rings. Introduction of oxypurinol (0.2 mg/ml) to the bath prevented the loss of constrictor responsiveness, thereby confirming that all of the oxidants were derived from the xanthine/xanthine oxidase reaction. Superoxide dismutase (200 U/ml) partially prevented the loss of norepinephrine responsiveness produced by xanthine oxidase-derived radicals. The pD2 in the SOD + xanthine/xanthine oxidase-treated vessels rings (7.19 ± 0.11) was significantly lower tan control vessel rings (7.49 ± 0.04) and significantly higher than xanthine/xanthine oxidase-treated vessels (6.89 ± 0.06). Catalase (1000 U/ml) also partially attenuated the loss of vascular norepinephrine responsiveness. The pD2 for the catalase + xanthine/xanthine oxidase-treated vessels (7.15 ± 0.02) was significantly lower than control vessels (7.39 ± 0.07)and significantly higher than the xanthine/xanthine oxidase-treated vessels (6.82 ± 0.11). The pD2 of vessels treated with a combination of SOD and catalase (7.40 ± 0.10) did not differ from control vessels (7.49 ± 0.12). The results of this study indicate that reactive species produced by the interaction of xanthine with xanthine oxidase depress norepinephrine-induced vasoconstriction. The loss of vasoconstrictor responsiveness appears to involve both superoxide and hydrogen peroxide.  相似文献   

4.
Proper functioning of the ovary is critical to maintain fertility and overall health, and ovarian function depends on the maintenance and normal development of ovarian follicles. This review presents evidence about the potential impact of oxidative stress on the well-being of primordial, growing and preovulatory follicles, as well as oocytes and early embryos, examining cell types and molecular targets. Limited data from genetically modified mouse models suggest that several antioxidant enzymes that protect cells from reactive oxygen species (ROS) may play important roles in follicular development and/or survival. Exposures to agents known to cause oxidative stress, such as gamma irradiation, chemotherapeutic drugs, or polycyclic aromatic hydrocarbons, induce rapid primordial follicle loss; however, the mechanistic role of ROS has received limited attention. In contrast, ROS may play an important role in the initiation of apoptosis in antral follicles. Depletion of glutathione leads to atresia of antral follicles in vivo and apoptosis of granulosa cells in cultured antral follicles. Chemicals, such as cyclophosphamide, dimethylbenzanthracene, and methoxychlor, increase proapoptotic signals, preceded by increased ROS and signs of oxidative stress, and cotreatment with antioxidants is protective. In oocytes, glutathione levels change rapidly during progression of meiosis and early embryonic development, and high oocyte glutathione at the time of fertilization is required for male pronucleus formation and for embryonic development to the blastocyst stage. Because current evidence suggests that oxidative stress can have significant negative impacts on female fertility and gamete health, dietary or pharmacological intervention may prove to be effective strategies to protect female fertility.  相似文献   

5.
The excessive generation of reactive oxygen metabolites (ROM) leads to an oxidative stress in the microvasculature of a variety of tissues and has been implicated as a causative event in a number of pathologies. There are numerous reviews on this topic that have been published recently. Herein, we will focus on a beneficial effect of ROM generation that leads to the development of an adaptive response that protects tissue from a subsequent oxidative stress (oxidant tolerance). We will focus on reductionist approaches (studies in isolated cells) used by our laboratory and those of others to define the mechanisms involved in this adaptational response and potential interactions between different cells within the tissue. As our prototype organ system, we target the heart, which has received the greatest amount of attention in this area. We will summarize evidence from isolated endothelial cells and cardiac myocytes that supports (i) the role of ROM in the development of oxidant tolerance, (ii) the possibility of an interaction between cardiac myocytes and endothelial cells in this phenomenon, and (iii) the potential interactions between ROMs and nitric oxide.  相似文献   

6.
The toxicity of acrolein was compared with that of reactive oxygen species using a mouse mammary carcinoma FM3A cell culture system. Complete inhibition of cell growth was accomplished with 10 μM acrolein, 100 μM H2O2, and 20 μM H2O2 plus 1 mM vitamin C, which produce OH, suggesting that toxicity of acrolein is more severe than H2O2 and nearly equal to that of OH, when these compounds were added extracellularly. Acrolein toxicity was prevented by N-acetyl-l-cysteine and N-benzylhydroxylamine, and attenuated by putrescine and spermidine. Toxicity of H2O2 was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase, and reduced by polyphenol, and toxicity of OH was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase and reduced by N-acetyl-l-cysteine. The results indicate that prevention of cell toxicity by N-acetyl-l-cysteine was more effective with acrolein than with OH. Protein and DNA synthesis was damaged primarily by acrolein and reactive oxygen species, respectively.  相似文献   

7.
When suddenly exposed to air the growth of the obligate anaerobic bacterium of the bacteroidaceae type, strain B6, continues for a few hours before coming to a complete stop. When air is shut off soon after growth has ceased, the organism is able to reestablish anaerobic conditions due to an ability to reduce O2, and resumes normal growth after another few hours. The O2 reducing ability of the organism is due to the presence in the cells of a particlebound NADH oxidase, a soluble NADPH oxidase and a soluble pyruvate oxidase. The two pyridine nucleotide oxidase reduce O2 to H2O2, the pyruvate oxidase reduces O2 to H2O. Catalase and peroxidase were not detected in anaerobically grown cells. Kinetic studies with cell-free extracts showed that the pyruvate oxidase had a considerably greater affinity (smaller K m) for O2 and capacity (higher V max) for O2 reduction than the two other oxidases. It is postulated that the pyruvate oxidase acts as a scavenger for O2, leading to the non-toxic reduction product H2O, and thus functions as a defense mechanism against oxygen toxicity when the organism is exposed to aerobic condition.Abbreviations PY peptone-yeast extract - PYG PY-glucose - PN pyridine nucleotide - PNH reduced PN - CCCP carbonylcyanide m-chlorophenylhydrazone - DNP 2.4-dinitrophenol  相似文献   

8.
The inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) are a collection of chronic idiopathic inflammatory disorders of the intestine and/or colon. Although the pathophysiology of IBD is not known with certainty, a growing body of experimental and clinical data suggests that chronic gut inflammation may result from a dysregulated immune response to normal bacterial antigens. This uncontrolled immune system activation results in the sustained overproduction of reactive metabolites of oxygen and nitrogen. It is thought that some of the intestinal and/or colonic injury and dysfunction observed in IBD is due to elaboration of these reactive species. This review summarizes the current state-of-knowledge of the role of reactive oxygen species and nitric oxide in the pathophysiology of IBD.  相似文献   

9.
Oxygen and reactive oxygen species (ROS) have been co-opted during evolution into the regulation of plant growth, development, and differentiation. ROS and oxidative signals arising from metabolism or phytohormone-mediated processes control almost every aspect of plant development from seed and bud dormancy, liberation of meristematic cells from the quiescent state, root and shoot growth, and architecture, to flowering and seed production. Moreover, the phytochrome and phytohormone-dependent transmissions of ROS waves are central to the systemic whole plant signaling pathways that integrate root and shoot growth. The sensing of oxygen availability through the PROTEOLYSIS 6 (PRT6) N-degron pathway functions alongside ROS production and signaling but how these pathways interact in developing organs remains poorly understood. Considerable progress has been made in our understanding of the nature of hydrogen peroxide sensors and the role of thiol-dependent signaling networks in the transmission of ROS signals. Reduction/oxidation (redox) changes in the glutathione (GSH) pool, glutaredoxins (GRXs), and thioredoxins (TRXs) are important in the control of growth mediated by phytohormone pathways. Although, it is clear that the redox states of proteins involved in plant growth and development are controlled by the NAD(P)H thioredoxin reductase (NTR)/TRX and reduced GSH/GRX systems of the cytosol, chloroplasts, mitochondria, and nucleus, we have only scratched the surface of this multilayered control and how redox-regulated processes interact with other cell signaling systems.

Oxygen and reactive oxygen species regulate plant growth, development, and differentiation through multiple interlinked signaling pathways.

Advances
  • Developmentally regulated hypoxia and reactive oxygen species (ROS) production are key features of the stem cell niches, providing information about stem cell position, the environment, and metabolic state.
  • Protein cysteine oxidation is central to oxygen and ROS signaling. However, S-nitrosylation, S-glutathionylation, S-sulfhydration, and S-sulfenylation modifications can occur on the same cysteine. The influence of each modification on stability, localization, and function remains unknown.
  • Numerous intersecting ROS signaling pathways are probable and likely depend on the site of ROS production and the nature of the oxidized receptor protein. ROS sensors such as the hydrogen peroxide (H2O2)-INDUCED Ca2+ INCREASES 1 (HPCA1) leucine rich receptor kinase translate redox signals into protein modifications to regulate signaling cascades. H2O2 perception/transduction is dependent on thiol-dependent mechanisms policed by the ferredoxin/thioredoxin (TRX), NAD(P)H TRX reductase C (NTRC), reduced glutathione (GSH), and glutaredoxin (GRX) systems.
  • ROS waves transmit redox signals from cell to cell in the apoplast, and probably through plasmodesmata. Long-distance transport of H2O2 and other ROS, therefore, appears to be unnecessary. Similarly, contact sites between organelles allow ROS transfer.
  • Convergence points for oxygen and ROS signaling occur on proteins such as ROH OF PLANT 2 (ROP2) GTPase,RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), and TRX-h to regulate meristematic activity via TARGET OF RAPAMYCIN (TOR) kinase activity.
  相似文献   

10.
In mammalian cells, reactive oxygen species (ROS) are produced via a variety of cellular oxidative processes, including the activity of NADPH oxidases (NOX), the activity of xanthine oxidases, the metabolism of arachidonic acid (AA) by lipoxygenases (LOX) and cyclooxygenases (COX), and the mitochondrial respiratory chain. Although NOX-generated ROS are the best characterized examples of ROS in mammalian cells, ROS are also generated by the oxidative metabolism (e.g., via LOX and COX) of AA that is released from the membrane phospholipids via the activity of cytosolic phospholipase A2 (cPLA2). Recently, growing evidence suggests that LOX- and COX-generated AA metabolites can induce ROS generation by stimulating NOX and that a potential signaling connection exits between the LOX/COX metabolites and NOX. In this review, we discuss the results of recent studies that report the generation of ROS by LOX metabolites, especially 5-LOX metabolites, via NOX stimulation. In particular, we have focused on the contribution of leukotriene B4 (LTB4), a potent bioactive eicosanoid that is derived from 5-LOX, and its receptors, BLT1 and BLT2, to NOX stimulation through a signaling mechanism that leads to ROS generation.  相似文献   

11.
Although both bacillary and coccoid forms of Helicobacter pylori reside in human stomach, the pathophysiological significance of the two forms remains obscure. The present work describes the effect of oxygen tension on the transformation and reactive oxygen species (ROS) metabolism of this pathogen. Most H. pylori cultured under an optimum O2 concentration (7%) were the bacillary form, whereas about 80% of cells cultured under aerobic or anaerobic conditions were the coccoid form. The colony-forming unit of H. pylori decreased significantly under both aerobic and anaerobic culture conditions. The bacillary form of H. pylori generated predominantly superoxide radical, whereas the coccoid form generated preferentially hydroxyl radical. Specific activities of cellular respiration, urease, and superoxide dismatase decreased markedly after transformation of the bacillary form to the coccoid form, with concomitant generation of protein carbonyls and 8-hydroxyguanine. The frequency of mutation of cells increased significantly during culture under nonoptimum O2 conditions. These results indicate that ROS generated by H. pylori catalyze the oxidative modification of cellular DNA, thereby enhancing the transformation from the bacillary to the coccoid form. The enhanced generation of mutagenic hydroxyl radicals in the coccoid form might accelerate mutation and increase the genetic diversity of H. pylori.  相似文献   

12.
Dichloroacetate (DCA) is one of the toxic by products that are formed during the chlorine disinfection process of drinking water. In this study, the developmental toxicity of DCA has been determined in zebrafish (Danio rerio) embryos. Embryos were exposed to different concentrations (4, 8, 16, and 32 mM) of the compound at the 4 h postfertilization (hpf) stage of development, and were observed for different developmental toxic effects at 8, 24, 32, 55, 80, and 144 hpf. Exposure of embryos to 8-32 mM of DCA resulted in significant increases in the heart rate and blood flow of the 55 and 80 hpf embryos that turned into significant decreases at the 144 hpf time point. At 144 hpf, malformations of mouth structure, notochord bending, yolk sac edema and behavioral effects including perturbed swimming and feeding behaviors were also observed. DCA was also found to produce time- and concentration-dependent increases in embryonic levels of superoxide anion (O2*-) and nitric oxide (NO), at various stages of development. The results of the study suggest that DCA-induced developmental toxic effects in zebrafish embryos are associated with production of reactive oxygen species in those embryos.  相似文献   

13.
14.
15.
The present studies were undertaken to determine the effects of reactive oxygen metabolites on erythropoietin (Ep) biosynthesis in Ep-producing renal carcinoma (RC) cells using a sensitive radioimmunoassay for Ep. Xanthine (10-5M) and increasing concentrations of xanthine oxidase (8 x 10(-7) to 5 x 10(-4) units/ml) produced a significant dose-related increase in Ep production at a concentration of greater than or equal to 4 x 10(-6) units/ml, whereas xanthine alone had no effect. Catalase, a scavenger of hydrogen peroxide (H2O2), in concentrations of 50 to 500 micrograms/ml produced a significant inhibition of the increase in Ep production induced by xanthine-xanthine oxidase; while no effect was seen on basal levels of Ep production and the growth of RC cells. Glucose oxidase (greater than or equal to 0.032 mU/ml), a direct H2O2 generator, and exogenous H2O2 (greater than or equal to 4 x 10(-6)M) added to the incubation mixture, caused a significant enhancement of Ep production in a dose-dependent manner. Xanthine-xanthine oxidase, glucose oxidase, and H2O2 in the above concentrations did not produce significant cytotoxicity (51Cr release or trypan blue dye exclusion). The present data suggests that H2O2, a reactive oxygen metabolite may play a significant role in Ep production.  相似文献   

16.
This study investigated mechanisms used by horses and steers to increase O2 uptake and delivery (VO2) from resting to maximal rates and identified the mechanisms that enable horses to achieve higher maximal rates of O2 consumption (VO2max) than steers. VO2 and circulatory variables were measured while Standardbred trotting horses and steers (450-kg body mass) stood quietly and ran on a treadmill at speeds up to those eliciting VO2max. As VO2 increased in both species, heart rate and circulating hemoglobin (Hb) concentration increased, thereby increasing O2 delivery by the circulation, while cardiac stroke volume remained unchanged. At VO2max arterial PCO2 increased from its resting value in horses but was unchanged in steers, and arterial PO2 decreased in both species. Although the horses hypoventilated and were hypoxemic at VO2max, no significant decrease in arterial Hb saturation occurred. VO2max of the horses was 2.6 times higher than that of the steers and was associated with a 100% larger cardiac output, 100% larger stroke volume, and 40% higher Hb concentration, whereas heart rates at VO2max were identical in the two species. The higher cardiac output of the horses at VO2max resulted from a 1.2-fold higher mean arterial pressure and 1.6-fold lower peripheral tissue resistance (associated with a larger skeletal muscle capillary bed). Both the magnitude of the difference in VO2max between horses and steers and the mechanisms used to achieve it are the same as observed in smaller pairs of mammalian species with large variation in aerobic capacity.  相似文献   

17.
Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of “mild uncoupling”. Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.  相似文献   

18.
Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress.  相似文献   

19.
Kim C  Kim JY  Kim JH 《BMB reports》2008,41(8):555-559
Reactive oxygen species (ROS) are generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. Although certain ROS production pathways are required for the performance of specific physiological functions, excessive ROS generation is harmful, and has been implicated in the pathogenesis of a number of diseases. Among the ROS-producing enzymes, NADPH oxidase is widely distributed among mammalian cells, and is a crucial source of ROS for physiological and pathological processes. Reactive oxygen species are also generated by arachidonic acid (AA) metabolites, which are released from membrane phospholipids via the activity of cytosolic phospholipase A(2) (cPLA(2)). In this study, we describe recent studies concerning the generation of ROS by AA metabolites. In particular, we have focused on the manner in which AA metabolism via lipoxygenase (LOX) and LOX metabolites contributes to ROS generation. By elucidating the signaling mechanisms that link LOX and LOX metabolites to ROS, we hope to shed light on the variety of physiological and pathological mechanisms associated with LOX metabolism.  相似文献   

20.
Amiodarone (AM) is an effective antidysrhythmic agent, restricted in use by the development of adverse effects, including potentially fatal AM-induced pulmonary toxicity (AIPT). Although the pathogenesis of AIPT is unknown, an oxidant mechanism has been proposed. The present study evaluated the role of reactive oxygen species (ROS) in AM-induced toxicity. The effect of inhibiting lung antioxidant defense on in vivo development of AIPT was evaluated in hamsters. Lung glutathione reductase activity was inhibited by 66%, 6 hours following administration of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (20 mg/kg i.p.). When AM (1.83 μmol) was administered intratracheally 6 hours after BCNU, toxicity was enhanced, as indicated by lung hydroxyproline content and histological evaluation 21 days later. However, BCNU treatment did not affect AM-induced alterations in lung glutathione, suggesting that the increased toxicity was not due to decreased antioxidant capacity following BCNU. The effect of BCNU on AM cytotoxicity in vitro was evaluated using rabbit lung alveolar macrophages. Incubation with 5 μM BCNU for 2 hours caused greater than 95% inhibition of glutathione reductase activity. However, BCNU treatment had no effect on 146 μM AM-induced cytotoxicity, as assessed by lactate dehydrogenase latency following 12 hours of incubation. Rabbit macrophages loaded with 2′,7′-dichlorofluorescin, which is oxidized by ROS to fluorescent 2′,7′-dichlorofluorescein (DCF), were used to evaluate ROS generation by AM. Incubation of macrophages with AM (73 or 146 μM) for 1 hour, with or without the catalase inhibitor sodium azide (1 mM), did not result in DCF formation. Overall, these results do not support the hypothesis that AIPT is due to ROS action. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号