首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different bacteria-derived systems for regulatable gene expression have been developed for the use in mammalian cells and some were also successfully adopted for in vivo use in vertebrate model organisms. However, certain limitations apply to most of these systems, including leakiness of transgene expression, inefficient transgene silencing or activation, as well as limited tissue accessibility of transgene-inducers or their unfavourable pharmacokinetics. In this study, we evaluated the suitability of the lac-operon/lac-repressor (lacO/lacI) system for the regulation of the well-established Vav-gene promoter that allows inducible transgene expression in different haematopoietic lineages in mice. Using the fluorescence marker protein Venus as a reporter, we observed that the lacO/lacI system could be amended to modulate transgene-expression in haematopoietic cells. However, reporter expression was not uniform and the lacO elements introduced into the Vav-gene promoter only conferred limited repression and reversion of lacI-mediated gene silencing after administration of IPTG. Although further optimization of the system is required, the lacO-modified version of the Vav-gene promoter may be adopted as a tool where low basal gene-expression and limited transient induction of protein expression are desired, e.g. for the activation of oncogenes or transgenes that act in a dominant-negative manner.  相似文献   

2.
In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding beta-galactosidase (beta-gal) driven by a TetOn system containing the rtTAS(s)M2 transactivator and the tTS(Kid) repressor under the control of the murine cytomegalovirus (mCMV) (HC-Ad-mTetON-beta-Gal) or the human CMV (hCMV) promoter (HC-Ad-hTetON-beta-Gal). Expression was tightly regulatable by doxycycline (Dox), reaching maximum expression in vivo at 6 days and returning to basal levels at 10 days following the addition or removal of Dox, respectively. Both vectors achieved higher transgene expression levels compared to the expression from vectors encoding the constitutive mCMV or hCMV promoter. HC-Ad-mTetON-beta-Gal yielded the highest transgene expression levels and expressed in both neurons and astrocytes. Antivector immune responses continue to limit the clinical use of vectors. We thus tested the inducibility and longevity of HC-Ad-mediated transgene expression in the brain of rats immunized against adenovirus by prior intradermal injections of RAds. Regulated transgene expression from HC-Ad-mTetON-beta-Gal remained active even in the presence of a significant systemic immune response. Therefore, these vectors display two coveted characteristics of clinically useful vectors, namely their regulation and effectiveness even in the presence of prior immunization against adenovirus.  相似文献   

3.
4.
5.
BACKGROUND: The goal of this study was to design improved regulatable lentivirus vector systems. The aim was to design tetracycline (tet)-regulatable lentivirus vectors based on the Tet-on system displaying low background expression in the absence of the doxycycline (DOX) inducer and high transgene expression levels in the presence of DOX. METHODS: We constructed a binary lentivirus vector system that is composed of a self-inactivating (SIN) lentivirus vector bearing inducible first- or second-generation tet-responsive promoter elements (TREs) driving expression of a transgene and a second lentivirus vector encoding a reverse tetracycline-controlled transactivator (rtTA) that activates transgene expression from the TRE in the presence of DOX. RESULTS: We evaluated a number of different rtTAs and found rtTA2S-M2 to induce the highest levels of transgene expression. Regulated transgene expression was stable in human breast carcinoma cells implanted into nude mice for up to 11 weeks. In an attempt to minimize background expression levels, the chicken beta-globin cHS4 insulator element was cloned into the 3' long terminal repeat (LTR) of the transgene transfer vector. The cHS4 insulator element reduced background expression but expression levels following DOX addition were lower than those observed with vectors lacking an insulator sequence. In a second strategy, vectors bearing second-generation TREs harboring repositioned tetracycline operator elements were used. Such vectors displayed greatly reduced leakiness in the absence of DOX and induced transgene expression levels were up to 522-fold above those seen in the absence of DOX. CONCLUSIONS: Inducible lentivirus vectors bearing insulators or second-generation TREs will likely prove useful for applications demanding the lowest levels of background expression.  相似文献   

6.
7.
8.
9.
Constitutive expression of hFIX protein in nonhepatocytes was studied. The gene targeting vector was constructed and transferred into HeLa cells. With the detection system of PCR, we demonstrated that the endogenous hFIX promoter was replaced with an hCMV promoter when targeted insertion of the constructor was directed by the sequence homology. The expression of hFIX in the modified HeLa cells, 11.2 ng/106 cell/24 h, strongly suggested that hFIX gene could be activated by a powerful promoter in nonhepatocytes. The results would make it possible to examine the feasibility of re-regulate gene expression by promoter replacement.  相似文献   

10.
Viral promoters are commonly used as regulatory elements in gene therapy vectors due to their strong activity in various cell lines in vitro. However, transgene expression under the control of viral promoters in vivo has been shown to be limited to a short period of time. Several mechanisms for the transient expression of the delivered transgene may be important including deletion of transduced cells or promoter downregulation. Recently we reported that cytokines may either decrease or increase the activity of the human cytomegalovirus (hCMV) promoter in monocytes depending on the differentiation status of the transduced cells. For many applications, the gene of interest has to be delivered into an inflammatory milieu (tumour, ischaemia/reperfusion, vector-induced inflammation etc.). In this report we investigated the influence of various inflammatory cytokines on the hCMV-IE promoter activity in transduced human primary endothelial cells (Huvec) in vitro, which may be the first target cells after gene transfer into different organs. Cultured cells were infected with an E1-deleted adenoviral vector encoding for E. colibeta-galactosidase (Adbeta-gal) driven by the hCMV-IE promoter and incubated either with or without various cytokines. Our results indicate that interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) downregulate promoter activity in endothelial cells whereas, in contrast, tumour necrosis factor (TNF-alpha), interleukin 1beta (IL-1beta) and interleukin 4 (IL-4) increased the promoter activity. These results suggest that inflammatory processes influence the in vivo expression of transferred viral promoter controlled genes of interest.  相似文献   

11.
The human cytomegalovirus promoter (hCMV) is susceptible to gene silencing in CHO cells, most likely due to epigenetic events, such as DNA methylation and histone modifications. The core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene has been shown to prevent DNA methylation. A set of modified hCMV promoters was developed by inserting one or two copies of IE in either forward or reverse orientations either upstream of the hCMV enhancer, between the enhancer and core promoter (CP), or downstream of the CP. The modified hCMV with one copy of IE inserted between the enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability without compromising expression level when compared with the wild‐type (WT) hCMV. A third of 18 EGFP expressing clones generated using MR1 retained 70% of their starting expression level after 8 weeks of culture in the absence of selection pressure, while none of 18 WT hCMV generated clones had expression above 50%. MR1 also improved antibody expression stability of methotrexate (MTX) amplified CHO cell lines. Stably transfected pools generated using MR1 maintained 62% of their original monoclonal antibody titer after 8 weeks of culture in the absence of MTX, compared to only 37% for WT hCMV pools. Low levels of CpG methylation within both WT hCMV and MR1 were observed in all the analyzed cell lines and the methylation levels did not correlate to the expression stability, suggesting IE enhances expression stability by other mechanisms other than preventing methylation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:523–534, 2014  相似文献   

12.
13.
14.
We have compared the level of expression of several enhancer/promoters in human lymphoblastoid Namalwa KJM-1 cells when fused to a common reporter gene. A cassette containing the pro-urokinase (pro-UK) coding sequence followed by the rabbit -globin and simian virus 40 (SV40) 3 nontranslated region was used for evaluation of the enhancer activity. Cells containing Moloney murine leukemia virus (Mo-MuLV) promoter had an average of 10–20 fold higher expression levels of pro-UK than those containing other promoters, such as SV40 early gene promoter, human cytomegalovirus (hCMV) major immediate-early gene promoter, Rous sarcoma virus (RSV) promoter and chicken -actin gene promoter. The expression level of pro-UK under the control of Mo-MuLV promoter was 2–3 g/106 cells/day and was constant for more than 6 months. Furthermore, the production of a high producer clone, obtained by using dhfr gene coamplification, reached 30–40 g/106 cells/day. Thus, Mo-MuLV promoter showed the desired characteristics for efficient expression of foreign genes in Namalwa KJM-1 cells.Abbreviations dhfr dihydrofolate reductase - G-CSF granulocyte colony-stimulating factor - hCMV human cytomegalovirus - LTR long terminal repeat - Mo-MuLV Moloney murine leukemia virus - MTX methotrexate - pro-UK pro-urokinase - RSV Rous sarcoma virus - SV40 simian virus 40 - T3 triiodo-thyronine - TRE thyroid-hormone responsive element  相似文献   

15.
In an attempt to better define molecular influences on rat interstitial collagenase gene expression in cartilage, the promoter function was characterized using transient transfection assay, electrophoresis mobility shift assay, and genetic analysis in isolated growth plate chondrocytes. Data from 5′-flanking deletion and selected mutations suggest that multiple cis elements in both the proximal and distal regions of the promoter were important in the regulation of promoter activity. A proximal tumor response element (TRE) was shown to be necessary for basal and interleukin (IL)-1β–inducible reporter gene activity. Cells stimulated by IL-1β (1 ng/ml; 18 h) had elevated TRE binding activity, and one of the factors involved was identified as the nuclear protein, c-Jun. Indeed, c-Jun directed antisense oligonucleotides reduced rat interstitial collagenase mRNA. A sense oligonucleotide was ineffective. Regulation of promoter activity was susceptible to Ras-dependent signaling as expression of dominant negative mutant of Ras kinase (pZIP-RasN17) reduced reporter gene activity. In a comparison of proximal promoter reporter plasmid activity between proliferative and hypertrophic cells, inhibition of Ras-dependent signaling was less effective in the later cell type. This study suggests that the activation of nuclear binding proteins that bind TRE may be a common event with IL-1β regulation. Moreover, these data suggest that the regulation of rat interstitial collagenase gene expression is a combinatorial process and multiple cis-acting regulatory sites may interact to exert different effects dependent on the stage of chondrocyte differentiation. J. Cell. Biochem. 67:92–102, 1997. Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    16.
    BACKGROUND: High transgene expression is generally expected after gene transfer. However, different level, kinetics and localization of expression might be needed for relevant therapeutic applications. Former studies have compared various promoter regions driving gene expression leading to conflicting results. In the present work, two promoter families have been compared using the efficient in vivo intramuscular electrotransfer technique. METHODS: Three promoter regions were constructed by associating the strong ubiquitous cytomegalovirus (CMV) enhancer-promoter to its homologous intron A or to a heterologous intron, or to a hybrid intron. Promoter regions derived from the muscle creatine kinase (MCK) promoter were also studied. The expression of the same transgene (SeAP or neurotrophin-3) under control of these different promoters was compared after plasmid electrotransfer in mouse tibialis-cranialis skeletal muscle. RESULTS: Heterologous intron association to the CMV promoter did not modify gene expression kinetics nor increase gene expression level. Usefulness of intron A or hybrid intron association to the CMV promoter depended on the gene. The various MCK promoters drove efficient gene expression but lower than that obtained with the CMV promoter. Furthermore, peak value was reached earlier with MCK promoter regions (14 days). CONCLUSION: For applications of gene transfer restricted to skeletal muscle, the MCK promoter or a MCK promoter variant would be a promising alternative to the CMV promoter. Indeed, it has been demonstrated that the use of MCK promoter limits humoral and cell-mediated immune responses. Furthermore, the MCK promoter decreases the initial expression peak that may be detrimental, drives a sustained gene expression, and improves gene transfer safety.  相似文献   

    17.
    18.
    19.
    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号