首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The role of environmental factors in seasonal succession of six clones of marine diatoms was examined by testing effects of various combinations of temperature (5°, 10°, 15°, 20°C) and photoperiod (10, 12, 14, 16 h) on time to germination of resting stages and subsequent vegetative cell division rates. Resting stages were induced in batch cultures using a low nutrient medium and a cold, dark period. A three-factor ANOVA showed that species, temperature, daylength, and their interactions signficantly (P =0.0001) injuenced germination time and division rate. Resting stages of Chaetoceros similis Cleve and Odontella aurita (Lyngbye) Agardh were most successful in producing populations of cells on warm, long days (20°C/16 h). Chaetoceros didymus Ehrenberg and C. cinctus Gran were most successful under more moderate conditions (15°C/14 h). Resting stages of Ditylum bright-wellii (West) Grunow germinated and cells divided rapidly under all conditions. No consistent pattern was evident with Thalassiosira rotula Meunier. We compared results of the laboratory study with environmental conditions prevailing during the presence of these species in a British Columbia fjord. Favorable growth conditions determined for C. didymus, D. brightwellii, and T. rotula were similar to conditions present when these species were commonly found in the fjord.  相似文献   

2.
A nitrogen limitation technique elicited the entire life cycle of the marine centric diatoms Chaetoceros diadema (Ehr.) Gran and Leptocylindrus danicus Cleve. In C. diadema the sexual cycle followed the same pattern as in the previously investigated C. didymus. Sexuality took place in narrow diameter cells, only at 2 and 5° C, and was seldom seen. Resting spore formation took place in cells of all sizes and at all temperatures at which the species grew vegetatively (2–15° C). The L. danicus life cycle is probably unique among diatoms. Nitrogen depletion induced sexuality in the entire culture at 10 and 15° C if the cell diameter was narrow (3–8 μm). Auxospore formation was followed by resting spore formation directly within the auxospore. In C. diadema, as in most centric diatoms, resting spores are not an obligate part of the life cycle, but they are in L. danicus. Resting spore formation is a versatile adaptive response in C. diadema, depending only on nitrogen depletion, although promoted by low temperatures. In L. danicus the linkage to the sexual process sharply limits conditions under which resting spores can form.  相似文献   

3.
Studies were made about resting spores of Synchytrium solstitiale, a chytrid that causes false rust disease of yellow starthistle (YST). During evaluation of this fungus for biological control of YST, a protocol for resting spore germination was developed. Details of resting spore germination and study of long-term survival of the fungus were documented. Resting spores from dried leaves germinated after incubating them on water agar at least 7 d at 10-15 C. Resting spores were viable after storage in air-dried leaves more than 2 y at room temperature, suggesting they have a role in off-season and long-term survival of the fungus. Each resting spore produced a single sorus that contained a single sporangium, which on germination released zoospores through a pore. YST inoculated with germinated resting spores developed symptoms typical of false rust disease. All spore forms of S. solstitiale have been found to be functional, and the life cycle of S. solstitiale has been completed under controlled laboratory and greenhouse conditions. Resting spore galls differ from sporangial galls both morphologically and biologically, and in comparison, each sporangial gall cleaves into several sori and each sorus produces 5-25 sporangia that rupture during release of zoospores. For this reason S. solstitiale should be reclassified as diheterogallic sensu Karling (Am J Bot 42:540-545). Because resting spores function as prosori and produce an external sorus, S. solstitiale is best placed in into the subgenus Exosynchytrium.  相似文献   

4.
Five taxa of Chaetoceros occur in inland waters of North America. These most commonly occur in waters with elevated total dissolved solids in arid regions of the western United States and Canada. Chaetoceros amanita Cleve-Euler is characterized by consistently forming relatively long chains of cells and having very spinose primary resting spore valves. Chaetoceros elmorei Boyer also forms long chains of cells which are connected by evident valvar processes; spores are nearly always smooth. Chaetoceros muelleri Lemm. may form short chains with processes between sibling valves, but also produces solitary cells lacking processes. Chaetoceros muelleri var. subsalsum (Lemm.)Johansen et Rushforth is similar to the nominate but never produces cells with Processes. Both of the C. muelleri varieties produce spores with smooth primary valves. Chaetoceros simplex Ostenfeld is characterized by a noncolonial habit, cells lacking processes and the production of resting spores with warty to some what spinose primary valves.  相似文献   

5.
休眠孢子的形成对于赤潮藻种群的保存、延续以及分布扩散等均具有重要的意义。通过单因子营养限制研究氮、硅对赤潮藻扁面角毛藻 (Chaetoceros compressus )休眠孢子形成的影响, 结果表明: 培养基中氮的初始浓度对休眠孢子的出现时间有一定影响。氮的初始浓度越低, 休眠孢子出现的时间越早; 反之, 氮的初始浓度越高, 休眠孢子出现的时间越晚。氮缺乏是硅藻形成休眠孢子的必需条件之一, 当培养基中氮含量低于10 mmol.L-1时, 扁面角毛藻可以形成休眠孢子。氮缺乏诱发的休眠孢子的形成需要大量的硅, 当培养基中硅含量低于23 mmol.L-1时, 即使氮缺乏, 扁面角毛藻也几乎不再继续形成休眠孢子。这说明硅藻休眠孢子的形成不仅受氮浓度的影响, 还与硅浓度有关。  相似文献   

6.
The formation of resting spores in diatoms is a common phenomenon in neritic environments. Here we report on resting spores of the genus Chaetoceros associated with a layer of increased chlorophyll fluorescence, at a depth of more than 200 m, north of Brabant Island and in Wilhelmina Bay, southeast coast of the Gerlache Strait (64°41.0′S, 62°0.5′W). Six species of Chaetoceros were identified by the morphology and size of the resting spores. Given that Chaetoceros spp., both in vegetative cells and as resting spores, are commonly found in Antarctic coastal surface waters, their location at depth could represent the pelagic “waiting” or “seeding” populations mentioned for other environments. Received: 25 November 1996 / Accepted: 16 November 1997  相似文献   

7.
Aims: To determine yields, germination and stability of superdormant Bacillus cereus spores. Methods and Results: Superdormant B. cereus spores were isolated by germination with high concentrations of inosine or l ‐alanine in 2–5% yield and did not germinate with high concentrations of either of these germinants, but germinated like starting spores with Ca‐DPA, dodecylamine, l ‐alanine plus inosine or concentrated complete medium. Yields of superdormant spores from germinations with low inosine concentrations were higher, and these spores germinated poorly with low inosine, but relatively normally with high inosine. Yields of superdormant spores were also higher when nonheat‐activated spores were germinated. Superdormant spores stored at 4°C slowly recovered some germination capacity, but recovery was slowed significantly at ?20°C and ?80°C. Conclusions: Factors that influence levels of superdormant B. cereus spores and the properties of such spores are similar to those in B. megaterium and B. subtilis, suggesting there are common mechanisms involved in superdormancy of Bacillus spores. Significance: Superdormant spores are a major concern in the food industry, because the presence of such spores precludes decontamination strategies based on triggering spore germination followed by mild killing treatments. Studies of the properties of superdormant spores may suggest ways to eliminate them.  相似文献   

8.
The fungal pathogen, Entomophaga maimaiga causes epizootics in populations of the important North American forest defoliator gypsy moth ( Lymantria dispar ). Increasing use of this fungus for biological control is dependent on our ability to produce and manipulate the long-lived overwintering resting spores (azygospores). E. maimaiga resting spores undergo obligate dormancy before germination so we investigated conditions required for survival during dormancy as well as the dynamics of subsequent germination. After formation in the field during summer, resting spores were stored under various moisture levels, temperatures, and with and without soil in the laboratory and field. The following spring, for samples maintained in the field, germination was greatest among resting spores stored in plastic bags containing either moistened paper towels or sterile soil. Resting spores did not require light during storage to subsequently germinate. In the laboratory, only resting spores maintained with either sterile or unsterilized soil at 4°C (but not at 20 or -20°C) germinated the following spring, but at a much lower percentage than most field treatments. To further investigate the effects of relative humidity (RH) during storage, field-collected resting spores were placed at a range of humidities at 4°C. After 9.5 months, resting spore germination was highest at 58% RH and no resting spores stored at 88 or 100% RH germinated. To evaluate the dynamics of infections initiated by resting spores after storage, gypsy moth larvae were exposed to soil containing resting spores that had been collected in the field and stored at 4°C for varying lengths of time. No differences in infection occurred among larvae exposed to fall-collected soil samples stored at 4oC over the winter, versus soil samples collected from the same location the following spring. Springcollected resting spores stored at 4°C did not go into secondary dormancy. At the time that cold storage of soil containing resting spores began in spring, infection among exposed larvae was initiated within a few days after bringing the soil to 15°C. This same pattern was also found for spring-collected resting spore-bearing soil that was assayed after cold storage for 2-7 months. However, after 31-32 months in cold storage, infections started 14-18 days after soil was brought to 15°C, indicating a delay in resting spore activity after prolonged cold storage.  相似文献   

9.
The effects of temperature (4–20°C), relative humidity (RH, 0–100%), pH (3–7), availability of nutrients (0–5 g/l sucrose) and artificial light (0–494 μmol/m2/s) on macroconidial germination of Fusarium graminearum were studied. Germ tubes emerged between 2 and 6 h after inoculation at 100% RH and 20°C. Incubation in light (205 ± 14 μmol/m/s) retarded the germination for approximately 0.5 h in comparison with incubation in darkness. The times required for 50% of the macroconidia to germinate were 3.5 h at 20°C, 5.4 h at 14°C and 26.3 h at 4°C. No germination was observed after an incubation period of 18 h at 20°C in darkness at RH less than 80%. At RH greater than 80%, germination increased with humidity. Germination was observed when macroconidia were incubated in glucose (5 g/l) or sucrose (concentration range from 2.5 × 10?4 to 5 g/l) whereas no germination was observed when macroconidia were incubated in sterile deionized water up to 22 h. Macroconidia germinated quantitatively within 18 h at pH 3–7. Repeated freezing (?15°C) and thawing (20°C) water agar plates with either germinated or non‐germinated macroconidia for up to five times did not prevent fungal growth after thawing. However, the fungal growth rate of mycelium was negatively related to the number of freezing events the non‐germinated macroconidia experienced. The fungal growth rate of mycelium was not significantly affected by the number of freezing events the germinated spores experienced. Incubation of macroconidia at low humidity (0–53% RH) suppressed germination and decreased the viability of the spores.  相似文献   

10.
Clostridium butyricum has been used as a probiotic in animals and humans for years, however, its fate in the intestine has not been clarified yet. We investigated the intestinal fate of C. butyricum using a selective medium and a monoclonal antibody after orally administering C. butyricum spores to rats. The number of C. butyricum, both viable and dead cells, in the intestinal contents were counted by enzyme-linked immunosorbent assay (ELISA) at various times after a single oral administration. The total viable number of C. butyricum was counted using a selective medium, and viable resting spores were selectively detected by treating the samples with ethanol. To investigate the intraluminal localization of the C. butyricum cells, frozen intestinal tracts were imprinted onto slides and stained with immunogold-silver. Total viable spores exceeded the number of viable resting spores by more than 10-fold from the proximal to middle of the small intestine 30 min after administration. Vegetative cells of C. butyricum were first detected in the distal small intestine after 2 hr, and vegetative growth was observed from the cecum to the colon 5 hr after administration. Dead vegetative cells were detected 9 hr after administration, and C. butyricum cells were not detected in the intestine after 3 days. The C. butyricum cells in the intestinal imprints were stained specifically by immunogold-silver staining, and proliferative cells were observed in the cecum after 3 hr. These results suggest that the administered C. butyricum germinated in the upper small intestine, grew mainly from the distal small intestine to the colon and were excreted from the rat intestine within 3 days.  相似文献   

11.
Strains of Botrytis cinerea and Mucor mucedo germinated and grew over the range 0.25°C. There were differences in germination rates and growth rates between strains of B. cinerea at any given temperature. Five of the benomyl-resistant strains germinated and grew more slowly than any of the other benomyl-resistant or benomyl-sensitive strains of B. cinerea tested. Strains of Rhizopus stolonifer and R. sexualis germinated and grew between 5 and 25°C, and although some spores germinated at 2°C, subsequent growth of the germ tubes and growth from a mycelial inoculum did not occur. Neither species germinated or grew at o°C. The effect of temperature on mycelial growth in vitro was consistent with the ability of the strains of the four species to infect strawberry fruits.  相似文献   

12.
13.
The fine structure of the plasma membrane in spores of the microsporidium Nosema algerae, a pathogen of mosquitoes, was examined in the resting condition and after the spores were stimulated to germinate in vitro. Slow penetration of resin caused collapse of the germinated spores. Thin sections of germinated spores showed peculiar membrane infoldings that were never found in ungerminated samples. Analogous germination-dependent configurations of the plasma membrane were observed in freeze-fractured preparations of spores either fixed and impregnated with glycerol prior to freezing, or rapidly frozen with liquid propane while in the process of germination. In every case, the replicas presented germinated spores with indentations in the protoplasmic face of the plasma membrane, and apparently complementary blunt spines on the external face, that were absent in ungerminated spores. It suggests that these alterations of the plasma membrane result from a structural adjustment to a spontaneous contraction of the spore case after germination. We discuss this interpretation with regard to conflicting views on the nature of such morphological features.  相似文献   

14.
The life stages ofEntomophaga grylli (Fresenius) Batko Pathotype 2 were purified and separated by centrifugation in PercollR density-gradient medium. The ranges of buoyant densities for germinated resting spores, germ conidia, and resting spores respectively were: 1.040–1.050, 1.055–1.085, and 1.080–1.120 g/ml. Cuticular invasion by germinated germ conidia was the means by whichMelanoplus grasshoppers became infected. Scanning electron micrographs revealed germination of germ conidia on the visible host integument at 100% RH, but not at 90% RH. Significantly higher mortality (P<0.05) was obtained after 3 weeks with grasshoppers incubated in constant light than in constant dark for 24 h following treatment. The disease was not transmitted by ingestion of any life stage. Contribution No 85-153-J, Department of Entomology. Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506.  相似文献   

15.
The soil‐borne potato pathogen Spongospora subterranea persists in soil as sporosori, which are aggregates of resting spores. Resting spores may germinate in the presence of plant or environmental stimuli, but direct evidence for resting spore dormancy is limited. A soilless tomato bait plant bioassay and microscopic examination were used to examine features of S. subterranea resting spore dormancy and infectivity. Dried sporosori inocula prepared from tuber lesions and root galls were infective after both short‐ and long‐term storage (1 week to 5 years for tuber lesions and 1 week to 1 year for root galls) with both young and mature root galls inocula showing infectivity. This demonstrated that a proportion of all S. subterranea resting spores regardless of maturity exhibit characteristics of stimuli‐responsive dormancy, germinating under the stimulatory conditions of the bait host plant bioassay. However, evidence for constitutive dormancy within the resting spore population was also provided as incubation of sporosorus inoculum in a germination‐stimulating environment did not fully exhaust germination potential even after 2.4 years. We conclude that S. subterranea sporosori contain both exogenous (stimuli‐responsive) and constitutively dormant resting spores, which enables successful host infection by germination in response to plant stimuli and long‐term persistence in the soil.  相似文献   

16.
Cell division rates and chlorophyll a and protein contents for ten diatom and dinoflagellate species were measured. Species were chosen to include a wide range of cell size in terms of both cell volume and cell protein: from 0.004 ng protein/cell for a small Chaetoceros sp. to 2.2 ng protein/cell for Prorocentrum micans Ehrenberg. Experiments were conducted in batch or semi-continuous cultures at 21 C under continuous illumination from 8–256 μEin .m-2'.s-1. Light saturation of cell division occurred at 32–80 μEin m-1 s-1 for all species, with no observable difference between the two phylogenetic groups. When the light-saturated cell division rates were plotted against cell size as protein/cell, the diatoms and dinoflagellates fell on two separate lines with the diatoms having higher rates. Chl a /protein ratios (μg/μg) decreased with increasing irradiance. The diatoms had higher chl a per unit protein. The relationship between cell division rate and the chl a/protein ratio is discussed.  相似文献   

17.
Studies were conducted to determine the influence of temperature and relative humidity (RH) on germinability and viability of Mucor piriformis spores. Spores did not survive when stored at 35 °C and their survival rate decreased rapidly at 30 °C; however, spores remained viable for more than 1 year at 0 °C. RH also significantly affected spore viability. Spores held at 26 °C and 100% RH no longer germinated after 35 days, while those held at 75 or 90% RH germinated for 65 days. At 20 °C, RH had little effect on spore germinability. The effect of temperature and RH on percentage spore germination also varied. At all temperatures studied, spore viability decreased more rapidly with time at 100% RH than at 75 or 90% RH. The least favorable, temperature-humidity combination, 30 °C and 100% RH, decreased spore germination from 100% to less than 1% in 14 days.  相似文献   

18.
The toxic effects of copper on resting spore formation and viability in the marine diatom Chaetoceros protuberans Lauder were determined both with and without silicic acid added to the medium. With silicic acid available, partial inhibition of resting spore formation occurred only at the highest cupric ion activity (pCu 8.6), while the percentage of cells forming spores at pCu's 10.2 and 11.3 was nearly the same as in the controls. Without silicic acid added to the medium, sporulation was completely inhibited at pCu 8.6 and greatly inhibited, at pCu 10.2. At pCu 11.3 and in the controls, the rate of spore formation was less than 50%. The results indicate that the inhibition of resting spore formation by copper is related to the concentration of silicic acid available to cells of C protuberans. This is consistent with previous studies which show that copper toxicity during vegetative growth involves interference with silicification in diatoms and is a Junction of the silicic acid concentration of the medium. Viable resting spores of C. protuberans were still present in cultures following exposure to elevated copper concentrations during a 100-day incubation period. This indicates that resting spores can serve to enhance diatom survival in areas polluted by heavy metals.  相似文献   

19.
Polymyxin B, one of the cyclic polypeptide antibiotics, binds to the coat of Bacillus subtilis dormant spores and inhibits them from growing after germination. When about 2.8 × 108 cells/ml of polymyxin B-treated dormant spores were incubated in heart infusion broth, 3.6 μg/ml of polymyxin B were released into the liquid medium during germination. Incubation of the same concentration of polymyxin B-treated ones in 100 mM CaCl2 solution released 4.0 μg/ml of the antibiotic. The effect of various concentrations of polymyxin B on germination, outgrowth and vegetative growth of the dormant spores was investigated; the results showed that concentrations of 4.0 μg/ml and higher of the antibiotic inhibited their outgrowth and vegetative growth after germination. Young vegetative cells were less sensitive to the antibiotic than germinated spores. In addition to these results, immunoelectron microscopy with colloidal gold particles indicated that polymyxin B permeated into the core of the germinated spores and inhibited them from outgrowing.  相似文献   

20.
休眠孢子的形成对于赤潮藻种群的保存、延续以及分布扩散等均具有重要的意义。通过单因子营养限制研究氮、硅对赤潮藻扁面角毛藻(Chaetoceros compressus)休眠孢子形成的影响,结果表明:培养基中氮的初始浓度对休眠孢子的出现时间有一定影响。氮的初始浓度越低,休眠孢子出现的时间越早:反之,氮的初始浓度越高,休眠孢子出现的时间越晚。氮缺乏是硅藻形成休眠孢子的必需条件之一,当培养基中氮含量低于10μmol·L^-1时,扁面角毛藻可以形成休眠孢子。氮缺乏诱发的休眠孢子的形成需要大量的硅,当培养基中硅含量低于23μmol·L^-1时,即使氮缺乏,扁面角毛藻也几乎不再继续形成休眠孢子。这说明硅藻休眠孢子的形成不仅受氮浓度的影响,还与硅浓度有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号