首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract The soil seed bank and its relation to the extant vegetation in a Eucalyptus regnans F. Muell. forest in the Central Highlands of Victoria were examined. The average seed density was 430 germinable seeds m?2 to a depth of 2 cm. There was a polynomial regression relationship between the density and species richness of seeds in soil and forest age (0. 6–54 years). Species richness was not significantly different among soil depths (0- 2 , 2- 5 , 5–10 and 10–20 cm) in the forest stand of 54 years old. More seeds germinated from the 5–10 cm depth than from the other depths. Forbs accounted for 73% of the total germinable seeds and there was no germination of E. regnans. The number of species, particularly woody plant species, germinating from the soil seed bank were significantly lower than in the extant vegetation. However, almost all species present in the soil seed bank were present in the vegetation. The soil seed bank provides an important source for the rapid regeneration of understorey vegetation following clear-cutting and slash-burning in the E. regnans forest. The rapid understorey establishment may play an important role in protecting soil from erosion, in nutrient conservation, replacement and redistribution. The soil seed bank may also be a necessary source of maintaining genetic diversity in the forest over the long term.  相似文献   

2.
In an unburnt, mature forest the germination of E. regnans on undisturbed bare ground is very poor in spite of adequate seed fall, and the presence of conditions suitable for germination over much of the year. No seed storage occurs in the top soil in spite of some temporary seed dormancy and the disturbance of the surface soil by earthworms and lyre birds. Seed is removed from the top soil by several ant species– Prolasius pallidus, P. brunneus, P. flavicornis and Chelaner leae –and is taken into nests. Removal of seed is more rapid and complete in summer than winter and is more vigorous in young forest than old. Observations on artificial nests in the field and laboratory indicate that seed is eaten and not stored for any length of time. The testae may be left intact, fragmented or moulded into crumbs with other material. Certain sugar-like substances, which are extractable in low concentrations from fresh seed, may be involved in the attractivity of seed to ants. The numbers of ant species in the forests vary with the micro-climate of the site, and in the mature understorey of Pomaderris aspera the activities of the three dominant species Iridomyrmex biconvexus, Prolasius pallidus and P, hrunneus are largely separated diurnally, seasonally, and spatially in the foraging areas of the litter layer. The density of the nests of seed-harvesting ants is high, particularly in bare areas of the forest floor. The total number of ants probably exceed 5–6 million/ha and is probably sufficient to effectively remove 60% of the sporadic seed fall of normal years. It is suggested that the success of germination of E. regnans after wild fires is not due to any specific stimulation but rather to a temporary interference of ant foraging activity and then to the saturation of their food requirements by a massive seed fall from canopy-stored capsules.  相似文献   

3.
Abstract Invasion by exotic species following clearfelling of Eucalyptus regnans F. Muell. (Mountain Ash) forest was examined in the Toolangi State Forest in the Central Highlands of Victoria. Coupes ranging in age from < 1- to 10-years-old and the spar-stage forests (1939 bushfire regrowth) adjacent to each of these coupes and a mature, 250-year-old forest were surveyed. The dispersal and establishment of weeds was facilitated by clearfelling. An influx of seeds of exotic species was detected in recently felled coupes but not in the adjacent, unlogged forests. Vehicles and frequently disturbed areas, such as roadside verges, are likely sources of the seeds of exotic species. The soil seed bank of younger coupes had a greater number and percentage of seeds of exotics than the 10-year-old coupes and the spar-stage and mature forests. Exotic species were a minor component (< 1% vegetation cover) in the more recently logged coupes and were not present in 10-year-old coupes and the spar-stage and mature forests. These particular exotic species did not persist in the dense regeneration nor exist in the older forests because the weeds were ruderal species (light-demanding, short-lived and short-statured plants). The degree of influence that these particular exotic species have on the regeneration and survival of native species in E. regnans forests is almost negligible. However, the current management practices may need to be addressed to prevent a more threatening exotic species from establishing in these coupes and forests.  相似文献   

4.
The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.  相似文献   

5.
The poor growth of young Eucalyptus regnans seedlings in undried soil from the mature forest of E. regnans can be overcome by previously air-drying the soil or by adding sufficient amounts of complete soluble fertilizer or equivalent concentrations of P (as NaH2PO4) and N (as NaNO3). A factorial pot experiment in which phosphate and nitrate were added to undried soil indicated that P was the primary deficiency for young seedlings and that response to N did not occur until this lack was satisfied. In dried soil, seedlings also responded to additions of complete fertilizer but most of this effect was due to N rather than P. Field trials in the mature forest also indicated greater growth in dried soil than undried soil and confirmed a response of young seedlings to superphosphate. In pot experiments, the concentration of P and N per g plant dry weight after four months was relatively constant irrespective of the final size of the plant. Seedlings in dried soil extracted up to 15 times more P than did those grown in undried soil. In general, chemical analysis of soil indicated more extractable P and N from dried soil although this was not always consistently so. Soil desiccation resulted in an increase in soil surface area due to the fragmentation of larger peds and to an increase in the number of microfractures which remained in the soil crumbs after rewetting. Mycorrhiza are likely to be important since the differentiation of the growth response of seedlings in dried and undried soil, which occurred at 5–6 weeks, corresponded with the establishment of full ectomycorrhizal development (80% root tips). The factors concerned with the increase in fertility after air-drying are discussed.Abbreviations GR Growth Ratio  相似文献   

6.
Abstract In an early spar-stage stand of Eucalyptus regnans at Beenak, Victoria, foraging by lyrebirds in bare floor areas on steep slopes results in a complex microtopography of excavations, accumulations and terracettes. About 200 t ha?1 of litter and top soil may be displaced an average of 70 cm downhill per year. Magnetic ferruginous pisolite was used as a marker to monitor progressive soil movement over 3 years. Very little disturbance occurred in areas of dense ground fern, but in bare areas the whole forest floor may be turned over every 20 months. In the site studied, foraging activity by lyrebirds varied seasonally and topographically. Disturbance by other biotic agents was minimal. The mean depth of soil cultivation was about 10 cm and litter was frequently buried or mixed intimately with soil. Since buried leaf litter decays more quickly than that on the surface, lyrebird foraging is likely to increase the rate of nutrient cycling. The small, steep clifflets left at the uphill limits of each scratch microsite provide litter-free niches for the establishment of tree fern prothalli and shade-tolerant herbs. All stages in the growth of the rough tree fern, Cyathea australis, were present in bare floor areas, but in dense ground fern patches, young stages were confined to rotten logs and upturned root balls. Since dense tree fern development tends to diminish the cover of dense ground fern, lyrebird foraging activity may maintain an accessible food resource which would otherwise diminish with increased ground fern cover in these forests in the course of secondary succession after fire.  相似文献   

7.
Abstract We examined the effects of adding fertilizers on nutrient concentrations in foliage, and on species composition and density of the understorey in a 10 year old Mountain Ash (Eucalyptus regnans F. Muell.) forest. Nutrient concentrations in foliage of three woody understorey species (Acacia dealbata, Pomaderris aspera and Olearia argophylla) showed no significant response to the addition of phosphorus and nitrogen either alone, in combination or combined with other nutrients. The phosphorus concentration in foliage and stems of two herbaceous species (Australina pusilla and Urtica incisa) was significantly increased by applying phosphorus. The addition of fertilizers had no significant effect on species composition and density of the understorey.  相似文献   

8.
Abstract Eleven sites, representing different successional stages of Eucalyptus regnans-dominated forest in the Central Highlands of Victoria, were selected to identify potentially important habitat variables for heliothermic reptiles, three species (Eulamprus tympanum, Niveoscincus coventryi, Pseudemoia spenceri) of which were common at these sites. Analyses reveal that many forest attributes are strongly correlated with stand age and that some are significant habitat variables for some of these species. ‘One-at-a-time’ modelling of habitat variables reveals that counts of E. tympanum are most strongly correlated with the proportion of grass as substrate (?ve), moss cover of logs (?ve) and litter depth (+ ve); N. coventryi counts are most significantly related to litter depth (?ve), numbers of logs (?ve), log diameter (?ve), the proportion of bare ground as substrate (?ve) and length of sunny patches (+ ve); P. spenceri counts are most significantly related to the number of sunny patches (?ve) and moss cover of logs (?ve). The total reptile count is most significantly correlated with stag diameter (?ve) and log diameter (?ve). Predictive equations for each of the common species are also presented, using measured habitat variables, and these, along with ‘one-at-a-time’ models, indicate that a number of factors determine reptile occurrence or abundance and that no single predictor variable is apparent.  相似文献   

9.
Carbon budgets of wetland ecosystems in China   总被引:1,自引:0,他引:1  
Wetlands contain a large proportion of carbon (C) in the biosphere and partly affect climate by regulating C cycles of terrestrial ecosystems. China contains Asia's largest wetlands, accounting for about 10% of the global wetland area. Although previous studies attempted to estimate C budget in China's wetlands, uncertainties remain. We conducted a synthesis to estimate C uptake and emission of wetland ecosystems in China using a dataset compiled from published literature. The dataset comprised 193 studies, including 370 sites representing coastal, river, lake and marsh wetlands across China. In addition, C stocks of different wetlands in China were estimated using unbiased data from the China Second Wetlands Survey. The results showed that China's wetlands sequestered 16.87 Pg C (315.76 Mg C/ha), accounting for about 3.8% of C stocks in global wetlands. Net ecosystem productivity, jointly determined by gross primary productivity and ecosystem respiration, exhibited annual C sequestration of 120.23 Tg C. China's wetlands had a total gaseous C loss of 173.20 Tg C per year from soils, including 154.26 Tg CO2‐C and 18.94 Tg CH4‐C emissions. Moreover, C stocks, uptakes and gaseous losses varied with wetland types, and were affected by geographic location and climatic factors (precipitation and temperature). Our results provide better estimation of the C budget in China's wetlands and improve understanding of their contribution to the global C cycle in the context of global climate change.  相似文献   

10.
Lupins, canola, ryegrass and wheat fertilized with Na2 35SO4 and either 15NH4Cl or K15NO3(N:S=10:1), were grown in the field in unconfined microplots, and the sources of N and S (fertilizer, soil, atmosphere, seed) in plant tops during crop development were estimated. Modelled estimates of the proportion of lupin N derived from the atmosphere, which were obtained independently of reference plants, were used to calculate the proportion of lupin N derived from the soil. Total uptake of N and S and uptake of labelled N and S increased during crop development. Total uptake of S by canola was higher than lupins, but labelled S uptake by lupins exceeded uptake by canola. The form of N applied had no effect on uptake of labelled and unlabelled forms of N or S. Ratios of labelled to unlabelled S and ratios of labelled to unlabelled N derived from soil sources decreased during growth, and were less for S than for N for each crop at each sampling time. Although ratios of labelled to unlabelled soil-derived N were similar between crops at 155, 176 and 190 days after sowing, ratios of labelled to unlabelled S for lupins were higher than for the reference crops and declined during this period. The ratios of labelled to unlabelled S in lupins and the reference plants therefore bore no relationship either to ratios of labelled to unlabelled soil-derived N in the plants, or to total S uptake by the plants. Therefore the hypothesis that equal ratios of labelled N to unlabelled soil-derived N in legumes (Rleg) and reference plants (Rref) would be indicated by equal ratios of labelled to unlabelled S was not supported by the data. The results therefore show that the accuracy of reference plant-derived values of Rleg cannot be evaluated by labelling with 35S.  相似文献   

11.
Making predictions as to how heatwaves will affect forests in the future is a major challenge in ecosystem science, not the least because we have few documented examples of how they respond now. We captured the effects of drought and a record-breaking heatwave on whole-tree water use (Q) in Eucalyptus regnans during the summer drought of 2008/2009 in southeastern Australia. While air temperatures steadily increased, average maximum sap flow (J Smax) declined with progression of the drought prior to the heatwave. In the period approaching the heatwave, Q during daytime (Q d) steadily declined, while nighttime Q (Q n) increased. This pattern was particularly pronounced during nights that followed hot days (>32 °C) where Q n was frequently 20–30 % of Q d. We found clear trends in the relation of Q d to Q n that point to the increasing importance of refilling depleted stem water stores following hot days. On the day the heatwave climaxed (7 February 2009), sap flow (J S) was dramatically low, and declined as weather conditions became increasingly arid (air temperature > 42 °C, vapor pressure deficit >7 kPa). Almost immediately after the heatwave passed J S resumed its common diurnal hysteresis, albeit at slightly slower rates. In the context of prognosticated effects of future climate, our data highlight that depletion and refill of stored water in E. regnans are likely important features for the tree to endure drought- and heat-related climatic extremes. We suggest that elucidating the peculiarity of capacitance and defining its threshold for keystone tree species, such as E. regnans, can add to our understanding of how climatic extremes may affect forests.  相似文献   

12.
Launonen  T. M.  Ashton  D. H.  Keane  P. J. 《Plant and Soil》1999,210(2):273-283
This study was conducted to compare the effects on the growth of Eucalyptus regnans seedlings of unheated soil and soil heated to different extents (as indicated by soil colour–bright red or black) in burnt logging coupes, and to separate the effects of heating of the soil on direct nutrient availability and on morphotypes and effectiveness of ectomycorrhizae. Burnt soils were collected from three logging coupes burnt 2, 14 and 25 months previously and unbumt soil from adjacent regrowth forests. Compared to unburnt soil, the early seedling growth was stimulated in black burnt soil from all coupes (burnt 2, 14 and 25 months previously). Seedling growth was generally poor in red burnt soil, especially in soil collected 2 months after burning. However, the concentration of extractable P was extremely high in red burnt soil, especially in soil collected 2 months after burning. In black burnt soil, extractable P was increased in soil 2 months after burning, but not in the soils collected 14 or 25 months after burning. However, both total P content and concentration in seedlings were increased in all collections of black burnt soil. Frequency of ectomycorrhizae was high in seedlings grown in all black burnt soils, but the mycorrhizal mantles were poorly developed in seedlings in black burnt soil collected 2 months after burning. Seedlings were also ectomycorrhizal in red burnt soil, except in soil collected 2 months after burning. Fine root inocula from seedlings grown in black burnt soils collected 14 and 25 months after burning significantly stimulated both seedling growth and P uptake compared with the uninoculated control, whereas the fine root inocula from the seedlings grown in all the other soils did not. These results suggest that, in black burnt soil, both direct nutritional changes and changes in the ectomycorrhizae may contribute to seedling growth promotion after regeneration burns. The generally poor seedling growth in red burnt soils is likely to have been due to N deficiency as the seedlings in these soils were yellow-green and the tissue concentrations of N were significantly lower than in other treatments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
S. H. Tham  C. M. Stewart 《Planta》1976,130(3):339-340
Summary When cambial tissues are removed from tree stems of Eucalyptus regnans F. Muell. and incubated in vitro with [14C]glucose, [14C]galactose and [14C]fructose in the presence of sufficient PVP (polyvinylpyrrolidone) radioactive sucrose, members of the raffinose family and related sugars are synthesized. These results suggest that PVP inactivates substances which, in in vitro experiments, inhibit the action of enzymes which are essential to the resynthesis of nutrient sugars (sucrose, raffinose and stachyose). In living trees, such enzyme inhibition is less likely to occur.  相似文献   

14.
Element interactions within forests differ from those in other major ecosystems for three major reasons: — a greater allocation of carbon to structural material; — a greater element storage within biomass; and — the diversity of carbon- and nutrient-containing metabolites produced. The most important of these differences is structural material, which can lead to C: element ratios in biomass (as a whole) 100 × greater than those in unicellular organisms. Stand allometry causes the amount of carbon stored and C:element ratios in biomass to change in predictable ways in the course of secondary succession. Such changes affect microbial dynamics and C: element interactions within soils. Bicarbonate, organic acids, nitrate, phosphate, and sulfate are major anions within forest soils: they control leaching of both anions and cations. Biotic interactions of C, N, P, and S during both uptake and mineralization control the potential for production of these anions within forests, and geochemical interactions regulate their mobility and loss.  相似文献   

15.
16.
The traditional model of nutrient availability in coastal estuarine ecosystems is based on predictable inputs of nitrogen (N) and phosphorus (P) via riverine and oceanic sources, respectively. But coastlines with low nutrient input from these sources may not fit into this simple framework. Here we use observational (seagrass nutrient content) and experimental (nutrient enrichment assays) data for assessing nutrient availability and limitation for primary producers along a spatial transect extending from the mouth (nearest to the ocean) to the terminal portion (boundary with the terrestrial ecosystem) of three coastal mangrove-lined tidal creeks in The Bahamas. Compiling seagrass nutrient content from all sites showed a negative relationship between seagrass nutrient limitation (either N or P) and distance from mouth, but this pattern differed across sites with respect to which nutrient was more limiting. Our experimental results demonstrated patterns of decreased response by microalgae to dual nutrient enrichment in one site with distance from the creek mouth, and increased response to single nutrient enrichment in another, with the third showing no trend along this gradient. Our findings show that Bahamian mangrove wetlands are extremely nutrient-limited ecosystems, and that the most limiting nutrient varied among sites. In general, these ecosystems deviate from the typical paradigm of spatial nutrient limitation patterns in estuaries. We suggest that various site-specific biological and physical factors may be more important than large-scale hydrologic factors in driving trends of nutrient availability in coastal ecosystems under strong nutrient constraints, such as in The Bahamas. Our findings suggest that even minor changes in nutrient loading rates can have significant implications for primary production in subtropical oligotrophic systems.  相似文献   

17.
Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.  相似文献   

18.
The neighbourhood model apportions offspring of individual mother plants to self-fertilization, outcrossing to males within a circumscribed area around the mother plant (the neighbourhood), and outcrossing to males outside the neighbourhood. Formerly the model was applied only to haploid pollen gametes in the offspring of conifers, but is extended so that it can be used with genotypic data from diploid offspring of both angiosperms and gymnosperms. In addition, it is shown that the mating parameters can be estimated without independent estimates of allele frequencies in the pollen pools outside the neighbourhood; thus the model might be applied effectively to natural populations exposed to unknown external pollen sources. Parameters of the neighbourhood mating model were estimated for a 10-year-old seed orchard population of the insect-pollinated tree, Eucalyptus regnans, in southeast Australia, which contained a mixture of two geographical provenances (Victoria and Tasmania). The mating patterns revealed were complex. Crosses between trees of the same provenance occurred three times more often than crosses between trees of different provenances. Levels of self-fertilization and patterns of mating within neighbourhoods were influenced by provenance origin, crop fecundity and orchard position (central vs. edge) of mother trees. Gene dispersal, however, was extensive, with approximately 50% of effective pollen gametes coming from males more than 40 m away from mother trees (average distance between neighbouring trees was 7.4 m). Thus, insect pollinators are efficient promoters of cross-fertilization in this orchard, with the result that the effective number of males mating with each female is large.  相似文献   

19.
The distribution of biomass and nutrients (N, P, K, Na, Mg, and Ca) among components of a Eucalyptus regnans forest and a mixed Eucalyptus obliqua-Eucalyptus dives forest near Melbourne in southern Victoria have been determined and are discussed. Both forests were found to have relatively low root biomass. Trees and soil accounted for more than 80% of each nutrient present in both ecosystems. The results of nutrient distribution studies in Australian eucalypt forests and in temperate forests elsewhere in the world are compared. These comparisons suggest that the above-ground living biomass in eucalypt forests contains no abnormally high or low quantities of macronutrients in relation to coniferous or deciduous hardwood forests. Detailed comparison among ecosystems is rendered difficult by the variable treatment given to roots and soils.  相似文献   

20.
Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN– DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号