首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously demonstrated that the oxysterol potentiation of arachidonic acid release and prostaglandin biosynthesis induced by foetal calf serum activation of normal rat kidney (NRK) cells (fibroblastic clone 49F) was not related to a direct effect of oxysterols on cell free Ca2+ level. Since both Ca2+ variations and protein C are involved in arachidonic acid release in some models, we looked for a possible modulation by protein C in the oxysterol effect on arachidonic acid release. We show that when the phorbol ester 12-O-tetradecanoyl-phorbol-13acetate (TPA), a protein kinase C activator, was added to the culture medium, the oxyterol effect on arachidonic acid release and prostaglandin synthesis clearly increased. Moreover, the effect of TPA was dose-dependent and TPA EC50 (4 × 10−9 M) was unchanged in the presence of the oxysterol. Preincubation of cells with TPA for 24 h prevented the arachidonic acid release induced by TPA alone, whereas the oxysterol effect was decreased but not abolished. In the absence of serum, TPA and ionomycin added together induced the same noticeable (arachidonic acid) release and PGE2 synthesis as serum alone. Nevertheless, the potentiating effect of cholest-5-ene-3β,25-diol was much higher when serum itself was used to activate NRK cells than it was in the present serum-mimicking experimental conditions. Thus, the presence of growth factors is probably required to obtain a full oxysterol effect. We conclude that the oxysterol effect was synergistic with, but not fully dependent on, protein kinase C and Ca2+ ion fluxes, therefore oxysterols could affed earlier events triggered by serum growth factor binding to their cell membrane receptors.  相似文献   

2.
A transient exposure of cell cultures to 12-0-tetradecanoyl-phorbol-13-acetate (TPA) is sufficient to stimulate DNA synthesis during a subsequent incubation in TPA-free medium. We show that (1) a substantial fraction of TPA remains bound to cultures following a transient exposure to TPA and thorough washing, (2) the ability of TPA to induce DNA synthesis is a function of the amount of TPA bound to cell cultures irrespective of whether it is incubated continuously with cultures or transiently exposed to cultures under various conditions, and that (3) a transient exposure of cultures to phorbol-12-13-dibuytrate (PDB), a mitogenic phorbol ester which binds reversibly to cell cultures, does not stimulate DNA synthesis during a subsequent incubation in PDB-free medium. Therefore the persisting effects of TPA are due to it binding to cultures in a manner resistant to washing and not due to the induction of a stable cellular change prerequisite for mitogenesis. Further, we show that certain combinations of polypeptide growth factors induce DNA synthesis in the absence of any such stable cellular change. Evidence is also presented that the persisting effects on DNA synthesis following transient exposure of cultures to other polypeptide growth factors (e.g., platelet-derived growth factor) reflect tenacious binding rather than induction of a lasting biological event.  相似文献   

3.
Summary Rotating-wall vessels (RWVs) allow for the cultivation of cells in simulated microgravity. Previously, we showed that the cultivation of lymphoblastoid cells in simulated microgravity results in the suppression of Epstein—Barr virus (EBV) reactivation. To determine if the suppression generated by simulated microgravity could be reversed by changing to static culture conditions, cells were cultured in an RWV for 5 d, and then switched to static conditions. Following the switch to static conditions, viral reactivation remained suppressed (significantly lower) relative to static control cultures over a 4-d period. Additionally, experiments were conducted to determine if chemical treatment could induce viral reactivation in cells from simulated-microgravity cultures. Cells were cultured in static flask cultures and in simulated microgravity in RWVs for 4–7 d. The cells were then transferred to 50-cm3 tubes, and treated with 3 mM n-butyrate for 48 h, or 18 ng/ml of phorbol ester, viz., 12-0-tetradecanoylphorbol-13 acetate (TPA) for either 2 or 48 h, under static conditions. Although EBV was inducible, the cells from simulated-microgravity cultures treated withn-butyrate displayed significantly lower levels of viral-antigen expression compared with the treated cells from static cultures. Also, incubation with TPA for 2–3 h, but not for 48 h, reactivated EBV in cells from RWV cultures. In contrast, EBV was inducible in cells from static cultures treated for either 2–3 or 48 h with TPA. TPA reactivation of EBV following a 2–3-h period of treatment indicates that the protein kinase C signal-transduction pathway is not impaired in lymphoblastoid cells cultured in simulated microgravity. However, the exposure of B-lymphoblastoid cells from simulated-microgravity cultures to TPA for more than 3–4 h triggered a lytic event (apoptosis or necrosis), which prevented replication of the virus. Thus, EBV-infected cells in simulated microgravity were negatively selected in the absence of any cytotoxic cells.  相似文献   

4.
The potent tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), is an effective modulator of DNA synthesis in bovine lymph node lymphocytes in culture. The effect of TPA on cellular proliferation depends to a great extent on the length of exposure and the mitogenic stimulus. Addition of TPA along with mitogenic lectins enhances DNA synthesis. Exposure to TPA for 2 days before addition of lectins depresses DNA synthesis. There is evidence that some inhbitory material other than TPA is formed during the longer incubation. Therefore, in this study, we used [3H]TPA to determine (i) the amount of material retained by the cells after preincubation and (ii) if TPA was metabolized during this culture period. We found that after incubation with 10?7 M, [3H]TPA, less than 3% of the radioactivity was retained by the cells. This was released by incubation in fresh medium. All of the cell associated material appeared to be TPA. However, the TPA in the medium was degraded by about 30% during a 2-day incubation to 12-O-tetradecanoyl-phorbol (TP), phorbol-13-acetate (PA) and phorbol. The source of the hydrolytic activity appeared to be serum because the same effect was seen in the absence of cells but was not seen in the absence of serum. These metabolites when added directly to the lymphocytes had no effect on DNA synthesis. Moreover, the amount of TPA retained by the cells and released into the medium was too small to account for the inhibitory activity of medium from TPA-treated cells. Studies are in progress to determine the nature of the inhibitory material after exposure to TPA.  相似文献   

5.
Cooperative site-to-site interactions among beta-adrenergic receptors of fat cell membranes are probed with the potent beta-adrenergic antagonist (?)-[3H]-dihydroalprenolol according to the kinetic method of De Meyts et al. (De Meyts, P., Roth, J., Neville, Jr., D.M., Gavin, III, J.R. and Lesniak, M.A. (1973) Biochem. Biophys. Res. Commun. 55, 154–161). Dissociation of specific (?)-[3H]dihydroalprenolol binding from fat cell membranes following a 100-fold dilution was rapid at 37°C; only 40% of the initial equilibrium binding remained 30 s after dilution. Dissociation of (?)-[3H]dihydroalprenolol bound under conditions yielding approximately 20% initial occupancy was performed in the absence and in the presence of a large molar excess of beta-adrenergic agonist ((?)-isoproterenol) or beta-adrenergic antagonist ((?)-alprenolol or(?)-propanalol). Neither agonists nor antagonists influenced the rate of (?)-[3H]dihydroalprenolol dissociation from fat cell membranes performed at 4, 22 or 37°C. Although analysis of the steady-state binding of (?)-[3H]-dihydroalprenolol to fat cell membranes yields Hill coefficients, nH, less than 1.0, the present study indicates that these fat cell beta-adrenergic receptors display no cooperative site-to-site interactions.  相似文献   

6.
The phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) specifically inhibited the binding of radioiodinated epidermal growth factor (125I-EGF) to rat pheochromocytoma (PC12) cells in a noncompetitive fashion with an apparent Ki of 11–26 nM. Both TPA and EGF elicited similar biological responses in PC12 cells including enhanced incorporation of 3H-choline and 32P-orthophosphate into macromolecules, induction of ornithine decarboxylase, and stimulation of the phosphorylation of a 30,000 MW nonhistone, chromosome-associated protein. These effects were also elicited by nerve growth factor (NGF) which, in contrast to the former agents, is a differentiating stimulus for the PC12 cells. The effects of TPA were additive or more than additive to the effects of NGF and EGF. When PC12 cells were induced to differentiate by treatment with NGF for 72 hours, the binding of 125I-EGF and responses to EGF were reduced by approximately 70%. The response of PC12 cells to the tumor promoter TPA was unaffected by treatment with NGF. Thus, the qualitatively similar effects of TPA and EGF seemed to be mediated through separate receptor systems with only the EGF receptor system reduced by NGF treatment.  相似文献   

7.
The induction of differentiation in human malignant T-lymphoblastic cell lines MOLT-3 and Jurkat by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) was examined using the monoclonal antibodies OKT3, OKT4, OKT6, and OKT8 which are known to react with human T-cell differentiation antigens. It was found that in the presence of nanomolar concentrations of TPA the proportion of OKT3+ (mature T-cell marker) cells increased while the proportion of OKT4+, OKT6+, and OKT8+ (relatively immature T-cell markers) cells decreased. These changes in the distribution of the OKT antigens in MOLT-3 cells were found to be more prominent with MOLT-3 cells than when the Jurkat cells were used. In studies using a double labeling approach it was found that although the OKT3+ and E-rosette-positive (E+) cells appeared to belong to the same subpopulations of MOLT-3 cells, the OKT3 antigen was probably not related to the receptor for sheep erythrocytes because adsorption of the OKT3 antibody did not block E-rosette formation. Studies using the DNA synthesis inhibitor, arabinosylcytidine (ara-C) also indicate that DNA synthesis was not required for the induction of more mature T-cell antigens in the malignant T-cell lines by TPA. These studies, taken together with our earlier reports, support the conclusion that namomolar concentrations of TPA can induce differentiation in these malignant T-cell lines. Furthermore we have shown that the T-cell hybridoma antibodies are useful markers to detect differentiation changes in human T cells.  相似文献   

8.
Gao X  Wang H  Sairenji T 《Journal of virology》2004,78(21):11798-11806
Latent Epstein-Barr virus (EBV) is reactivated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in EBV-infected cells. In this study, we found that TPA up-regulated phosphorylation of p38, a mitogen-activated protein kinase, and activated c-myc mRNA in EBV-positive epithelial GT38 cells. The EBV immediate-early gene BZLF1 mRNA and its product ZEBRA protein were induced following TPA treatment. Protein kinase C inhibitors, 1-(5-isoquinolinesulphonyl)-2, 5-dimethylpiperazine (H7) and staurosporine, inhibited the induction of p38 phosphorylation and the activation of c-Myc by TPA. The p38 inhibitor SB203580 blocked both p38 phosphorylation and ZEBRA expression by TPA. Pretreatment of GT38 cells with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine inhibited p38 phosphorylation and c-Myc activation by TPA, suggesting that NO may inhibit EBV reactivation via both p38 and c-Myc. By using short interfering RNA (siRNA) targeting either p38 or c-myc, we found that p38 or c-myc siRNA specifically inhibited expression of the respective gene and also suppressed the induction of ZEBRA and EBV early antigen. The interferon (IFN)-responsive gene expression tests ruled out the possibility that the antiviral effect of siRNA is dependent on IFN. Our present study demonstrates for the first time that either p38 or c-myc siRNA can efficiently inhibit TPA-induced EBV reactivation in GT38 cells, indicating that p38- and/or c-myc-associated signaling pathways may play critical roles in the disruption of EBV latency by TPA.  相似文献   

9.
The P3HR-1 Burkitt lymphoma line carries the Epstein-Barr virus (EBV) genome and a small proportion of the cells (1-3%) enter the lytic cycle spontaneously. Treatment with TPA and n-butyrate elevates considerably the number of virus-producing cells (25-35%). Cells which enter the lytic cycle express the EBV early antigen EA, the viral capsid antigen VCA, and the membrane antigen MA. Antibodies against these antigens are present in EBV-immune human sera. The expression of virus envelope protein on the plasma membrane renders the cells sensitive to immune effector mechanisms. These were shown to be initiated by the alternative complement pathway (ACP)-activating capacity of the cells and by their reactivity with antibodies directed to the MA. When incubated with EBV-immune or nonimmune human serum, the induced (P3HR-1-V) cells activated C3 through ACP and fixed the generated C3 fragments. The efficiency of opsonization was higher in immune serum. By varying the experimental conditions we showed the damage of the induced cells by the complement system and by blood lymphocytes, and analysed the involvement of antibodies and the activated C3 fragments in the lymphocyte-mediated lysis. P3HR-1-V cells were lysed by immune serum and also by nonimmune serum though with lower efficiency. The induced cells had elevated sensitivity to the NK effect which was potentiated if the conditions allowed their opsonization. In the presence of antibodies the lymphocyte-mediated lysis was considerably higher and the ADCC mechanism was also potentiated by opsonization. These experiments suggest that B cells which enter the virus-producing cycle may be eliminated in EBV nonimmune host by NK cells. After the antibody response against the virus develops, the attack on these cells is more efficient through complement and lymphocyte-mediated antibody-dependent mechanisms. These effector mechanisms are enhanced by opsonization which is the consequence of the C3-activating capacity of the cells. The multiple ways of the immune attack on the B cells prepared to produce EBV may explain the absence of EA and VCA positive B cells in tumor cell populations and during the acute phase of infectious mononucleosis.  相似文献   

10.
The cultivation of mouse epidermal cells in medium of reduced calcium concentration (0.02–0.1 mM) selects for basal cell growth. Elevation of medium calcium levels above 0.1 mM results in rapid and well defined differentiative changes. This model was utilized to determine which cell type in mouse epidermis responds to the phorbol ester tumor promoter, 12-0-tetradecanoyl-phorbol-13-acetate (TPA), by an induction of the enzyme ornithine decarboxylase (ODC). Previous data had shown that TPA induces ODC in primary mouse epidermal cells only during the first 36 hr after plating in medium containing 1.44 mM Ca2+. In contrast, the induction in cells grown in low calcium medium was 2–10-fold greater, and inducibility persisted for at least 4 weeks. The greater inducibility of ODC in low calcium cells is not paralleled by increased thymidine incorporation after TPA treatment, probably because these cells are already proliferating at a maximum rate. When low calcium cells grown in 0.07 mM Ca2+ medium were switched to 1.2 mM Ca2+, there was a rapid loss of ODC inducibility. These results strongly suggest that the basal cells of the epidermis constitute the major target cells for the induction of ODC by TPA. The induction of ODC by ultraviolet light was not enhanced by growth of cells in low calcium medium, indicating that extracellular calcium concentration per se does not determine ODC inducibility. When epidermal cells grown in 1.2 mM or 0.07 mM Ca2+ medium were exposed to both UV light and TPA, there was a significant synergistic effect of combined treatment over the sum of each individual response, suggesting that factors in addition to differentiation determine the extent of ODC induction.  相似文献   

11.
D Moscatelli  E Jaffe  D B Rifkin 《Cell》1980,20(2):343-351
Angiogenesis is associated with the fragmentation of blood vessel basement membranes. Since collagen is a major constituent of basement membranes, cultured human endothelial cells derived from umbilical cord veins were assayed for their ability to produce collagenase. Unstimulated cultured human endothelial cells did not secrete detectable levels of active collagenase into the culture medium. However, if the post-culture medium was treated with trypsin or plasmin, low levels of collagenolytic activity were detected, indicating that endothelial cells secrete small amounts of latent collagenase. Addition of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA) to the culture medium stimulated the secretion of collagenase by endothelial cells 5–30 fold. More than 90% of the collagenase was secreted in the latent form. Stimulation of collagenase production was detected at 10?9 M TPA and was maximal at 10?8 M TPA. An increase in the rate of collagenase production could be detected within 3 hr after the addition of TPA, and full induction occurred by 12 hr. Cycloheximide (3 μg/ml) or actinomycin D (0.1 μg/ml) inhibited both basal levels of collagenase production and the stimulation of collagenase production by TPA. Phorbol-12,13-didecanoate (PDD), a tumor-promoting analog of TPA, also stimulated collagenase production when administered at the same concentrations that were effective for TPA. However, 4-O-methyl TPA and 4-αPDD, two analogs of TPA which are not tumor promoters, did not stimulate collagenase production at concentrations up to 10?7 M. The collagenase produced by endothelial cells was a typical vertebrate collagenase as judged by the following criteria: it cleaved collagen into only two fragments which were three quarters and one quarter of the length of the intact molecule; it was inhibited by EDTA and human serum; it was not inhibited by inhibitors of serine, thiol or aspartate proteases. Thus TPA causes an increase in the production of latent collagenase by cultured human endothelial cells.  相似文献   

12.
The potent tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) can stimulate quiescent, nonproliferating 3T3 cells to reenter the cell cycle and divide. We have previously used a slection technique developed in our laboratory to isolate variant cell lines which no longer divide in response to epidermal growth factor. We have now utilized the same selection procedure to isolate, from 3T3 cells, two variant cell lines, TNR-2 and TNR-9, which retain growth control and divide in response to elevated serum or fibroblast growth factor, but which do not respond to TPA. The variants do not incorporate precursors into DNA in response to TPA, demonstrating that the cells do not enter the S phase of the cell cycle. The TPA nonresponsive variant TNR-2 cannot respond to epidermal growth factor; TNR-9 responds to this mitogen. TNR-2 variant cells, which do not respond to EGF, do not bind 125I-EGF. TPA can modulate 125I-EGF binding to TNR-9 cells in a manner similar to its action on parental 3T3 cells. This TPA-induced alteration of EGF binding indicates that TNR-9 cells still interact with TPA, despite their inability to mount a mitogenic response.  相似文献   

13.
14.
15.
Using inhibitors and activators of protein kinase C, it was demonstrated that in isolated plasma membranes of target cells estradiol-17 beta selectively stimulates protein phosphorylation by endogenous protein kinase C. In estradiol-dependent tissues, estradiol effectuates the translocation of protein kinase C from the cytosol to the membrane fraction within 10-12 minutes. Estradiol activates protein kinase C in cellular membranes of target tissues via a mechanism which is different from that of phorbol ester (TPA): 3H-estradiol, in contrast with 3H-TPA, it is not bound by protein kinase C and, in contrast with TPA, estradiol-17 beta does not activate purified protein kinase C in vitro. In this case, the specific stimulation of protein kinase C translocation to membranes and the estradiol-induced increase in the phosphorylation of plasma membrane proteins seem to be due to the estradiol-induced activation of the transmembrane system of polyphosphoinositide degradation, eventually resulting in the formation of diacylglycerol, a protein kinase C activator.  相似文献   

16.
Binding kinetics of porcine 125I-insulin were studied in synaptosomal and microsomal fractions of rat brain cortex. Receptor binding was temperature- and pH-dependent with optimum at 4°C and pH 8.0–8.3. At 15°C, steady state binding was heterogenous, and Scatchard analysis revealed two classes of receptors with Kd of 2 nmol/l and 40 nmol/l in amounts of 50 pmol/g and 200 pmol/g of membrane protein. Dissociation kinetics were biexponential with T12 of about 5 min and 180 min, and in contrast to other cell-types, not influenced by negative cooperativity. No receptor-mediated insulin degradation was detectable at 37°C in the presence of bacitracin. Insulin analogues inhibited 125I-insulin binding with potencies relative to porcine insulin (%): human insulin 100, rat insulin (I+II) 71, coypu insulin 47, rat multiplication stimulating activity 8, porcine proinsulin 5, among which the three last values were significantly higher than in rat liver and fat cells. No competition was observed with porcine relaxin and mouse nerve growth factor up to about 1 μmol/l. Receptors were present in all regions of central nervous system with highest concentrations in the cerebral cortex, cerebellum and olfactory bulb, and lowest in the pons, medulla oblongata and spinal cord. In conclusion, insulin receptors in rat brain cortex are functionally different from other tissues regarding the insulin specificity and the absence of negative cooperativity. It is suggested that an insulin receptor subtype in rat brain mediates the growth activity of insulin on nerve cells.  相似文献   

17.
Epstein-Barr virus (EBV) receptor-negative cells were treated with UV-inactivated Sendai virus (SV) or with reconstituted SV envelopes having a low hemolytic activity and then assayed for EBV binding or for susceptibility to EBV infection. EBV binding was assessed by using both unlabeled and fluoresceinated EBV preparations. It was found that SV or SV envelope treatment renders these cells able to bind EBV. Various experiments were performed to clarify the mechanism of this SV-induced binding. The EBV receptor-negative 1301 cells were treated with SV either at 0°C or at both 0 and 37°C successively and then examined for EBV binding at 0°C. It was thus found that when SV treatment was performed exclusively at 0°C, the target cells showed higher fluorescence intensity after their incubation with fluoresceinated EBV. In addition, Clostridium perfringens neuraminidase treatment of 1301 cells did not induce any EBV binding to these cells. These data indicate that EBV binding is not due to the disturbance of the cell membrane by SV envelope fusion or to the uncovering of EBV binding sites on the cells after the enzymatic action of SV neuraminidase. Moreover, bound EBV was partly eluted from SV-treated 1301 cells at 37°C, and the treatment of EBV with C. perfringens neuraminidase inhibited its SV-mediated binding. These data indicate that EBV binds to the hemagglutinin-neuraminidase of SV on the target cell surface and that a fraction of the bound EBV becomes irreversibly associated with the SV-treated cell membrane. Our data also show that EBV can penetrate into 1301 cells which have incorporated SV envelopes into their membrane, as demonstrated by the induction of the EBV-determined nuclear antigen by B95-8 EBV in SV envelope-treated 1301 cells.  相似文献   

18.
Li  Gaoxin  Ding  Ling  Ma  Xiaojing  Cai  Qiliang  Ying  Tianlei  Wei  Fang 《中国病毒学》2019,34(4):467-470
<正>Dear Editor,Epstein-Barr virus (EBV, also termed human herpesvirus-4) was the first identified human tumor virus. Since its discovery in 1964, studies have shown that EBV infects over 90%of all people by the time they are adults(Williams and Crawford 2006). EBV infection can result in  相似文献   

19.
Protein kinase C (PKC) has a prominent role in signal transduction of many bioactive substances. We synthesized the fluorescent derivative, phorbol-13-acetate-12-N-methyl-N-4-(N,N′-di(2-hydroxyethyl)amino)-7-nitrobenz-2-oxa-1,3-diazole-aminododecanoate (N-C12-Ac(13)) of 12-O-tetradecanoylphorbol-13-acetate (TPA) to monitor the location of phorbol ester binding sites and evaluate its potential use as a probe of PKC in viable cells. The excitation maximum wavelength of N-C12-Ac(13) is close to 488 nm, facilitating its use in argon-ion laser flow and imaging cytometry. When incubated with 100 nM N-C12-Ac(13) at 25°C, P3HR-1 Burkitt lymphoma cells accumulated the dye rapidly, reaching maximum fluorescence within 25 min, 20-fold above autofluorescence. Addition of unlabeled TPA significantly decreased the fluorescence of N-C12-Ac(13) stained cells in a dose-dependent manner indicating specific displacement of the bound fluoroprobe. Competitive displacement of [3H]-phorbol-12,13-dibutyrate ([3H]-PBu2) from rat brain cytosol with N-C12-Ac(13) gave an apparent dissociation constant (Kd) of 11 nM. N-C12-Ac(13) possessed biological activity similar to TPA. Like TPA (final concentration 65 nM) N-C12-Ac(13), at a lower concentration (51 nM), induced expression of Epstein-Barr viral glycoprotein in P3HR-1 cells, differentiation of promyelocytic HL60 cells, and caused predicted changes in the mitotic cycle of histiocytic DD cells. Microspectrofluorometric images of single cells labeled with N-C12-Ac(13) showed bright fluorescence localized intracellularly and dim fluorescence in the nuclear region, consistent with dye binding mainly to cytoplasmic structures and/or organelles and being mostly excluded from the nucleus. Because of the high level of non-specific binding of N-C12-Ac(13), this probe is not ideal for visualizing PKC in intact cells, but would be a valuable fluoroprobe to investigate the kinetic properties of purified PKC. Also, knowledge gained from these studies allows us to predict structures of fluorescent phorbols likely to have less non-specific binding and, consequently, be potentially useful for monitoring PKC in viable cells.  相似文献   

20.
Exposure to the tiglian 12-O-tetradecanoylphorbol-13-acetate (TPA) represents one of the most efficient and widely used protocols for inducing Epstein-Barr virus (EBV)-infected cells from latent into lytic cycle. Since TPA is both a potent tumor promoter and a potent activator of the cellular protein kinase C (PKC), we sought to determine whether either of these activities was closely linked to EBV lytic cycle induction. A panel of TPA structural analogs, encompassing tiglians with different spectra of biological activities, was assayed on a number of EBV-positive B-lymphoid cell lines. Lytic cycle induction correlated with the capacity to activate PKC, not with tumor promoter status; some nonpromoting tiglians were as efficient as TPA in inducing lytic cycle antigen expression. We then sought more direct evidence for an involvement of PKC in the induction process. In initial experiments, 1-(5-isoquinolinyl sulphonyl)-2-methylpiperazine (H-7), the best available pharmacological inhibitor of PKC, completely blocked the induction of the lytic cycle by TPA and its active analogs. This is consistent with, but does not prove, a requirement for active PKC in the induction process, since H-7 targets PKC preferentially but also has some effects on other kinases. We therefore turned to the synthetic pseudosubstrate peptide PKC(19-36) as a means of specific PKC inhibition and to the closely related but inactive peptide PKC(19-Ser-25-36) as a control. Using the technique of scrape loading to deliver the peptides into cells of an adherent EBV-positive target line, we found that the pseudosubstrate peptide PKC(19-36) completely and specifically blocked tiglian-induced entry of the cells into the lytic cycle. The evidence both from TPA analogs and from enzyme inhibition studies therefore indicates that the pathway linking TPA treatment to lytic cycle induction involves active PKC. Interestingly, inhibition of PKC had no effect upon the spontaneous entry into lytic cycle which occurs in naturally productive cell lines, suggesting that spontaneous entry is signalled by another route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号