首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intercellular coupling between cumulus cells and oocytes persists after oocyte meiotic maturation has been initiated. The experiments described here focus on the relationship between oocyte-cumulus cell intercellular coupling during maturation and the subsequent embryonic development of spontaneous mouse parthenotes. Several lines of evidence suggest that this coupling during oocyte maturation is required for the acquisition of the capacity for spontaneous mouse parthenotes to develop embryologically. First, the period of time that LT/Sv oocytes remained coupled to cumulus cells during oocyte maturation in vivo corresponded to that required for the acquisition of the capacity for parthenogenetic embryonic development. Second, the longer that cumulus cells were present during Fpontaneous oocyte maturation in vitro, the higher was the percentageofova undergoing subsequent parthenogenetic development. Third, cumulus cell-free oocytes cocultured with cumulus cell-enclosed oocytes during the maturation period in vitro did not develop embryologically. Fourth, intercellular coupling between cumulus cells and oocytes persisted throughout the oocyte maturation period in vitro. Fifth, incubation of oocyte-cumulus cell complexes in medium containing follicle-stimulating hormone (FSH) promoted uncoupling and decreased the percentage of ova undergoing parthenogenetic development. Thus, cell-to-cell communication, mediated via the intercellular coupling pathway between cumulus cells and oocytes, plays an important role during oocyte maturation and relates to subsequent preimplantation development.  相似文献   

2.
Release of oocytes of LT/Sv mice from the meiosis-inhibiting influence of antral follicles promotes parthenogenetic activation and development to early cleavage stages of 14% of the eggs. However, to attain the potential to develop to blastocysts under the culture conditions used, the oocytes must mature within follicles for 8–9 hr after human chorionic gonadotropin (HCG) administration. The results suggest that some positive influence, which does not occur during spontaneous oocyte maturation under defined conditions in vitro, occurs within preovulatory follicles and imparts developmental competence to the maturing oocytes.  相似文献   

3.
These experiments were done to determine whether the culture medium used for the spontaneous maturation of mouse oocytes can affect the subsequent capacity of the ova to become fertilized and complete preimplantation development in vitro and development to live young. Oocytes obtained from antral follicles of gonadotropin-primed immature mice underwent spontaneous maturation in control medium, i.e. Eagle's Minimum Essential Medium (MEM) supplemented with 5% fetal bovine serum, or in one of eight different media which were also supplemented with serum. All of the ova were fertilized in Whitten's medium and were assessed for cleavage to the 2-cell stage and for further preimplantation development to blastocysts during culture in Whitten's medium. Three of the eight media used for oocyte maturation improved the capacity of the ova to develop to the blastocyst stage when compared with the control: Waymouth MB 752/1, MEM with non-essential amino acids, and MEM Alpha; Waymouth medium promoted the highest frequency of development of ova to the blastocyst stage. Moreover, the blastocysts derived from oocytes that matured in Waymouth medium contained more cells than blastocysts derived from oocytes that matured in control medium. Although BGJb medium promoted the cleavage of eggs to the 2-cell stage when present during oocyte maturation, it had a detrimental effect on their subsequent preimplantation developmental capacity. Following transfer to foster mothers, more 2-cell stage embryos developed to live young after oocyte maturation in Waymouth medium (21%) than in control medium (13%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary In preimplantation stages of normal and spontaneously activated parthenogenetic embryos of the LT/Sv mouse strain, protein synthesis was analyzed by using two-dimensional polyacrylamide gel electrophoresis. Fertilization and parthenogenetic activation cause similar changes of polypeptide synthesis when compared with those of unfertilized eggs. The overt developmental delay of early parthenotes, which is probably due to an initial retarded activation in comparison with normal fertilization, is documented molecularly by a similar delay in their protein synthesis pattern. These differences are clearly visible at the two-cell stage but gradually disappear during further cleavage. The basic protein patterns of normal and parthenogenetic embryos are remarkably similar up to the blastocyst stage. However, quantitative differences occur in all preimplantation embryos analyzed and become more distinct at the blastocyst stage. In addition, only minor qualitative changes appear during late preimplantation. These alterations in protein synthesis may reflect at the molecular level early events in abnormal development of parthenotes. Our biochemical results are discussed in context with biological experiments rescuing parthenogenetic LT/ Sv embryos by chimera formation.  相似文献   

5.
The diameters of oocytes in follicles having a single layer of granulosa cells were measured hi four week old mice of various strains. There is a unique population of these follicles hi strains LT/Sv and C58/J in which the oocytes are significantly larger than the oocytes in single granulosa cell layered follicles of other common strains (C57BL/6J, BALB/cJ, and DBA/2J). These unique follicles are referred to as granulosa cell deficient (GCD) follicles since oocytes of these sizes are usually found in follicles with more than a single layer of granulosa cells. The parthenogenetic embryos that give rise to ovarian teratomas in strain LT/Sv are usually found in GCD-follicles. Some of the ova of strains LT/Sv and LTXBP, but not the ova of the other strains, are capable of spontaneous parthenogenetic activation after meiotic maturation. Although the ovulated ova of strain LTXBP are capable of spontaneous parthenogenetic development, the frequency of GCD-follicles and teratocarcinogenesis is low. Therefore, the frequency of ovarian teratocarcinogenesis is correlated with the simultaneous occurrence of two atypical conditions: first, the capability of the matured ova to undergo spontaneous parthenogenetic activation and, second, the high frequency of GCD-follicles.
GCD-follicles containing oocytes with a diameter greater than 65 μm were studied by electron microscopy. The follicles are usually enclosed within a layer of flattened theca-like cells. A basal lamina separates these cells from a single layer of cuboidal granulosa cells. Granulosa cell processes traverse the zona pellucida to contact the oocyte which shows ultrastructural characteristics typical of oocytes in the final growth stages. It is proposed that the GCD-follicles are competent to participate in the normal functions of follicular cells relating to oocyte growth and meiotic maturation.  相似文献   

6.
To investigate the effects of water-soluble vitamin supplementation for IVM/IVC of porcine oocytes and evaluate maturation and developmental capacity in vitro, porcine cumulus oocyte complexes (COCs) was matured in NCSU-23-based medium with water-soluble vitamins for 44 h and then cultured in PZM-3 for 7 days following activation. The COCs were allocated into five treatment groups and matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, 0.4, and 1x). Metaphase II plates of the cumulus-free oocytes were observed following Hoechest 33258 staining. The COCs were allocated into four treatment groups, matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, and 0.4x) and cultured in PZM-3 following activation. Also, COCS were matured without MEM vitamins and cultured in PZM-3 with various concentrations (control, 0.1, 0.4, 1.0, and 2.0 x) of MEM vitamins. Furthermore, 2 x 2 factorial (IVM/IVC) experiments were performed in IVM medium with or without 0.05 x MEM vitamins and IVC medium with or without 0.4x MEM vitamins to examine the in vitro development of parthenogenetic embryos. Maturation rates of COCs treated with MEM vitamins did not differ significantly among groups. However, compared to the control group, oocytes matured with the addition of 0.05 x MEM vitamins developed to blastocysts at a higher percentage (P<0.05) following activation and culture in PZM-3 without MEM vitamins. Total cell number of blastocysts was significantly higher in the 0.05 x group. Addition of 0.4x MEM vitamins decreased (P<0.05) cleavage and blastocyst developmental rates compared with 0.05 x MEM vitamins-treated group. In contrast, addition of vitamins to PZM-3 medium for in vitro culture of activated porcine oocytes did not affect development. In conclusion, addition of a low concentration of MEM vitamins to IVM medium for porcine oocytes enhanced subsequent development and improved embryo quality.  相似文献   

7.
Eggs were isolated from the oviducts or ovaries of LT/Sv strain mice in order to investigate the pathways taken by them following spontaneous or induced parthenogenetic activation. The chromosome preparations from the ovarian oocytes that matured in vitro to metaphase I were all morphologically normal. Of 42 recently ovulated eggs that failed to activate parthenogenetically in culture, 57% on nuclear densitometric analysis were found to have the normal 2C amount of DNA, and 1N (haploid) number of chromosomes present, and were arrested at metaphase II. Somewhat unexpectedly, 43% had a 4C amount of DNA, and 2N (diploid) number of chromosomes present, had been arrested at metaphase I, and were evidently ovulated as primary oocytes. Following parthenogenetic activation, the majority of oocytes extruded a polar body and developed a single pronucleus. The activated eggs could be divided into two sub-populations according to the diameter (and therefore volume) of the pronucleus—in one group this was about one-third greater than in the other. The chromosome constitution of the two groups was determined separately at the first cleavage mitosis. Those with a normal-sized pronucleus were invariably haploid, while those with an enlarged pronuclear volume were invariably found to be diploid. The chromosomes in the diploid spreads often appeared to be associated in homologous pairs. We conclude that almost uniquely in LT/Sv strain females eggs may be activated parthenogenetically at either stage of meiotic maturation giving rise to diploid or haploid embryos, respectively.  相似文献   

8.
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that duringin vitromaturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H × C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.  相似文献   

9.
Karyotypic and light and electron microscopical analyses were made of spontaneous preimplantation mouse parthenotes from the LT/Sv inbred strain. It was found that the activated oocyte and developing embryos were diploid. We believe that diploidization is achieved by the oogonium undergoing a premeiotic mitosis without cytokinesis followed by two meiotic divisions, thus producing diploid parthenotes. The developmental events with respect to membrane specialization, such as junctional complexes, were similar to those observed in fertilized embryos. A unique feature of the developing parthenote was the failure of the mitochondria to change during the morula stage. The mitochondria retained a few irregularly oriented cristae rather than many transversely oriented ones observed in morulae developing from fertilized eggs. The significance of this observation is discussed.  相似文献   

10.
The oocytes of LT/Sv strain mice are unique in that a high proportion of them (∼40% in this study) are ovulated before reaching metaphase of the second meiotic division (metaphase II). The remaining oocytes of LT/Sv mice are ovulated at metaphase II, as in other strains of mice. When recently ovulated oocytes were cultured in vitro for 11–12 h, those ovulated at metaphase II remained at this stage, whereas those ovulated at metaphase of the first meiotic division (metaphase I) commonly resumed meiosis during in vitro aging. These oocytes extrude the polar body and form a diploid pronucleus. This oocyte activation is not coupled with cortical granule exocytosis. The oocytes ovulated at metaphase II are fully capable of normal fertilization, whereas those ovulated at metaphase I are not. Approximately 50% of metaphase I oocytes penetrated by spermatozoa remain at this stage, and sperm nuclei frequently undergo premature chromosome condensation. Only 13% of spermpenetrated metaphase I oocytes formed a diploid female pronucleus and a haploid male pronucleus by 4 h after insemination. These results demonstrate that the two types of ovulated LT/Sv oocytes have different potentials to undergo either spontaneous or sperm-induced activation.  相似文献   

11.
Aneuploidy underlies failed development and possibly apoptosis of some preimplantation embryos. We employed a haploid model in the mouse to study the effects of aneuploidy on apoptosis in preimplantation embryos. Mouse metaphase II oocytes that were activated with strontium formed haploid parthenogenetic embryos with 1 pronucleus, whereas activation of oocytes with strontium plus cytochalasin D produced diploid parthenogenetic embryo controls with 2 pronuclei. Strontium induced calcium transients that mimic sperm-induced calcium oscillations, and ploidy was confirmed by chromosomal analysis. Rates of development and apoptosis were compared between haploid and diploid parthenogenetic embryos (parthenotes) and control embryos derived from in vitro fertilization (IVF). Haploid mouse parthenotes cleaved at a slower rate, and most arrested before the blastocyst stage, in contrast to diploid parthenotes or IVF embryos. Developmentally retarded haploid parthenotes exhibited apoptosis at a significantly higher frequency than did diploid parthenotes or IVF embryos. However, diploid parthenotes exhibited rates of preimplantation development and apoptosis similar to those of IVF embryos, indicating that parthenogenetic activation itself does not initiate apoptosis during preimplantation development. These results suggest that haploidy can lead to an increased incidence of apoptosis. Moreover, the initiation of apoptosis during preimplantation development does not require the paternal genome.  相似文献   

12.
The effects of hormonal priming and inosine monophosphate (IMP) dehydrogenase inhibitors on the meiotic maturation and parthenogenetic activation of mouse oocytes were examined in this study. In the first series of experiments, unprimed mice or mice primed 24 h with equine chorionic gonadotropin (eCG) received injections of the IMP dehydrogenase inhibitors, bredinin (Br) or mycophenolic acid (MA), followed by histological examination at 24 h, 48 h, and 72 h after drug administration. In both treatment groups, oocytes from nonatretic antral follicles were stimulated to undergo germinal vesicle breakdown by 24 h and became parthenogenetically activated as manifested by pronuclear formation and early cleavage divisions. The parthenotes underwent degeneration by 72 h. In the second part of this study, the effects of priming and drug treatment on parthenogenetic activation and subsequent developmental potential in vitro were examined. Mice were primed with eCG, and 24 or 48 h later received injections of Br or MA. Cumulus cell-enclosed oocytes were isolated 21-22 h later and assessed for maturation; those having undergone germinal vesicle breakdown were cultured and subsequently examined for embryonic development. In mice primed for 24 h, but not 48 h, Br and MA stimulated a significant number of oocytes to resume maturation in vivo; these subsequently underwent activation and developed to blastocysts in vitro. In another series of experiments, germinal vesicle-stage oocytes were isolated from primed or unprimed mice and cultured in vitro to permit spontaneous meiotic maturation. Nine percent of mature ova from 24-h-primed mice developed to 2-cell parthenotes; activation in ova from unprimed and 48-h-primed mice was considerably lower. A time-course experiment demonstrated that the extent of parthenogenetic activation in vivo following Br treatment was related to the period of time between drug injection and isolation of ova, the optimal period being 12 h. Neither Br nor MA had a direct activating effect on the oocytes as evidenced by an inability to induce parthenogenesis in vitro. Simultaneous injection of hCG with either Br or MA stimulated ovulation and prevented the parthenogenetic response. These data are consistent with the idea that conditions within the follicle promote parthenogenetic activation when the oocyte matures in the absence of gonadotropin stimulation.  相似文献   

13.
Bormann CL  Ongeri EM  Krisher RL 《Theriogenology》2003,59(5-6):1373-1380
Only a small proportion of goat oocytes selected for in vitro oocyte maturation (IVM) can successfully complete cytoplasmic maturation and support embryonic development. To produce goat blastocysts more efficiently in vitro, it is necessary to identify factors required during oocyte maturation. The objective of this study was to determine the role of vitamins during maturation of caprine oocytes in semi-defined medium on subsequent developmental capacity in vitro. Cumulus oocyte complexes (COCs) collected from a local abattoir were matured in synthetic oviductal fluid (SOF) medium supplemented with BSA, LH, FSH, and EGF in the presence or absence of MEM vitamins for 24 h. The COCs were co-incubated with frozen-thawed sperm in Bracket and Oliphant fertilization medium for 18-22 h. Embryos were cultured in G1.2 medium for 72 h followed by culture in G2.2 medium for an additional 72 h. Addition of vitamins significantly increased (P<0.05) overall blastocyst development (16.4+/-1.2% versus 12.3+/-1.1%), and tended to increase (P<0.06) the percentage of cleaved embryos (61.4+/-3.0% versus 52.7+/-2.6%). Addition of MEM vitamins to SOF maturation medium significantly increased (P<0.05) mean blastocyst cell number compared with control medium (107.7+/-6.0 versus 85.1+/-6.3). Hatched blastocysts tended to have increased (P<0.06) cell numbers in the vitamin-treated group (150.5+/-8.4 versus 123.4+/-8.8). These results suggest that addition of vitamins during oocyte maturation is beneficial for subsequent blastocyst development and viability.  相似文献   

14.
Improvement of an electrical activation protocol for porcine oocytes   总被引:16,自引:0,他引:16  
Factors influencing pig oocyte activation by electrical stimulation were evaluated by their effect on the development of parthenogenetic embryos to the blastocyst stage to establish an effective activation protocol for pig nuclear transfer. This evaluation included 1) a comparison of the effect of epidermal growth factor and amino acids in maturation medium, 2) an investigation of interactions among oocyte age, applied voltage field strength, electrical pulse number, and pulse duration, and 3) a karyotype analysis of the parthenogenetic blastocysts yielded by an optimized protocol based on an in vitro system of oocyte maturation and embryo culture. In the first study, addition of amino acids in maturation medium was beneficial for the developmental competence of activated oocytes. In the second study, the developmental response of activated oocytes was dependent on interactions between oocyte age at activation and applied voltage field strength, voltage field strength and pulse number, and pulse number and duration. The formation of parthenogenetic blastocysts was optimal when activation was at 44 h of maturation using three 80-microsec consecutive pulses of 1.0 kV/cm DC. Approximately 84% of parthenogenetic blastocysts yielded by this protocol were diploid, implying a potential for further in vivo development.  相似文献   

15.
In this study, the chromosome constitution of both unfertilized oocytes and fertilized eggs isolated from the oviducts of LT/Sv strain mice were analyzed. Air-dried chromosome preparations from unfertilized oocytes revealed that about one-third of those examined were ovulated as primary oocytes. These were arrested at metaphase of the first meiotic division and exhibited the characteristic “tetrad” chromosome configuration. The remaining two-thirds of the unfertilized oocytes were ovulated at metaphase of the second meiotic division. The fertilized eggs were isolated from the oviducts of LT/Sv females previously mated to (C57BL × CBA) F1 hybrid males. Analysis of the fertilized eggs at metaphase of their first cleavage mitosis revealed that about one-third of the eggs examined were digynic triploids, whereas the remaining two-thirds had the normal diploid chromsome constitution. In the triploids, the 40 female chromosomes present (mouse, n = 20) were derived from a single diploid pronucleus formed after the extrusion of a first polar body, and following the monospermic fertilization of primary oocytes. The female pronuclear-derived chromosomes invariably exhibited “homologous pairing,” and these were associated at their centromeres. The ovulation, penetration, and subsequent fertilization of primary oocytes is an extremely unusual phenomenon in mammals and only appears to occur on a regular basis in LT/Sv mice. The premature “cytoplasmic maturation” of these oocytes is of interest, as they clearly have the same developmental capacity as secondary oocytes. The significance of these observations in relation to folliculogenesis and litter size in LT/Sv mice is discussed.  相似文献   

16.
Otaegui PJ  O'neill GT  Wilmut I 《Cloning》1999,1(2):111-117
Cell-cycle phase of the donor and recipient cells at the moment of nuclear transfer influences subsequent development of the reconstituted embryo. In order to study this effect, the precise cell-cycle phase of the recipient oocyte at the time of fusion must be known and this depends on reliable activation of oocytes in a protocol that has a low incidence of spontaneous activation. Mouse oocytes recovered before (8-10 hours post-human chorionic gonadotropin [hCG]) and after ovulation (14 and 18 hours post-hCG) were exposed to strontium ions in calcium magnesium-free M16 culture medium. The effect on development of haploid parthenotes of post-hCG age of the oocyte, the duration of exposure, and strontium concentration in the medium was determined. These experiments established a reliable method of parthogenetic activation of recently ovulated mouse oocytes, involving the culture of oocytes for 60 minutes in 25 mM strontium in a calcium magnesium-free M16 medium. This method of activation was also able to induce activation of preovulatory oocytes after a preincubation period in vitro. Only a low incidence of spontaneous activation was observed if oocytes were recovered before or immediately after ovulation (14 hours after hCG).  相似文献   

17.
Meiotic maturation progresses atypically in oocytes of strain LT/Sv and l/LnJ mice. LT/Sv occytes show a high frequency of metaphase l-arrest and parthenogenetic activation. l/LnJ oocytes display retarded kinetics of meiotic maturation and a high frequency of metaphase l-arrest. Some l/LnJ oocytes fail to resume meiosis. Changes in the configuration of chromatin, microtubules, and centrosomes are associated with specific stages of meiotic progression. In this study, the configuration of these subcellular components was examined in LT/Sv, l/LnJ, and C57BL/6J (control) oocytes either freshly isolated from large antral follicles or after culture for 15 hr to allow progression of spontaneous meiotic maturation. Differences were found in the organization of chromatin, microtubules, and centrosomes in LT/Sv and l/LnJ oocytes compared to control oocytes. For example, rather than exhibiting multiple cytoplasmic and nuclear centrosomes as in the normal germinal vesicle-stage oocytes, LT/Sv oocytes typically contain a single large centrosome. In contrast, l/LnJ oocytes displayed many small centrosomes. The microtubules of normal germinal vesicle-stage oocytes were organized as arrays or asters, but microtubules were shorter in LT/Sv oocytes and absent from l/LnJ oocytes. After a 15-hr culture, centrosomal material of normal metaphase II oocytes was organized at both spindle poles. In contrast, metaphase l-arrested LT/Sv oocytes exhibited an elongated spindle with centrosomal material appearing more organized at one pole of the spindle. Both control and LT/Sv oocytes displayed cytoplasmic centrosomes. Metaphase l-arrested l/LnJ oocytes rarely had cytoplasmic centrosomes but exhibited centrosomal foci at the spindle periphery. Thus, oocytes that are atypical in the progression of meiotic maturation displayed aberrant configurations of microtubules and centrosomes, which are thought to participate in the regulation of meiotic maturation.  相似文献   

18.
The appropriate in vitro bovine oocyte maturation and ethanol activation conditions for preimplantation bovine embryo parthenogenetic development to the blastocyst stage were investigated. A 7% ethanol concentration significantly enhanced (P<0.05) the proportion of activated, in vitro-matured bovine oocytes (7% ethanol, 83.4 +/- 3.2% versus 0% ethanol, 63.9 +/- 2.0%). The proportion of activated oocytes was significantly higher (P<0.05) by treatment with 7% ethanol for a minimum of 2 minutes (2 minutes, 89.8 +/- 4.0% versus 0.5 minutes 63.4 +/- 4.9%). Oocyte maturation for periods ranging from 30, 34, 38 and 44 hours resulted in a significant increase (P<0.05) in the proportion of activated oocytes, and in oocytes displaying 2 or 3 pronuclei versus oocytes matured for 26 hours. The proportion of cleaved, activated oocytes (2-cell stage), 4 -cell stage and parthenogenetic morula/blastocysts was significantly higher (P<0.05) within the 34-hour oocyte maturation treatment group. Although the 44-hour oocyte maturation treatment group displayed the highest proportion of activated oocytes with 2 pronuclei, it did not display the highest cleavage frequency, possibly due to the effects of postovulatory aging. Several morphologically normal parthenogenetic bovine blastocysts developed from oocytes that were in vitro matured for 34 hours. The ability to produce such parthenogenetic embryos will eventually facilitate investigation into the role(s) of the maternal and paternal genomes during bovine early development.  相似文献   

19.
Melatonin secreted from the mammalian pineal gland is a free-radical scavenger that protects tissues from cell damage. The present study examined the effects of addition of melatonin to the culture medium on the developmental potential of parthenogenetic and somatic cell nuclear-transferred (SCNT) porcine oocytes. Supplementation of the maturation medium with melatonin did not increase the maturation rate, the proportion of oocytes that cleaved and developed into blastocysts after parthenogenetic activation, or the blastocyst cell number compared to controls. When 10-7 M melatonin was added to the culture medium, the proportion of parthenogenetic oocytes that developed to the 2-cell and 4-cell stages was significantly higher than that of controls. The potential of melatonin-treated oocytes to develop into blastocysts was high but not significantly different from that of controls. The addition of 10-7 M melatonin to the culture medium did not increase the preimplantation development of SCNT oocytes. Melatonin treatment significantly reduced the levels of reactive oxygen species in 4-cell parthenogenetic and SCNT embryos, but did not reduce the proportion of apoptotic cells in parthenogenetic and SCNT blastocysts. Although the results indicated that parthenogenetic and SCNT melatonin -treated embryos had significantly lower levels of reactive oxygen species than controls, the potential of melatonin-treated embryos to develop into blastocysts was not significantly higher than that of controls, in contrast to previous reports. The beneficial effects of melatonin on the developmental potential of oocytes might depend on the culture conditions.  相似文献   

20.
Oocytes of LT/Sv mice have anomalous cytoplasmic and nuclear maturation. Here, we show that in contrast to the oocytes of wild-type mice, a significant fraction of LT/Sv oocytes remains arrested at the metaphase of the first meiotic division and is unable to undergo sperm-induced activation when fertilized 15 hours after the resumption of meiosis. We also show that LT/Sv oocytes experimentally induced to resume meiosis and to reach metaphase II are unable to undergo activation in response to sperm penetration. However, the ability for sperm-induced activation developed during prolonged in vitro culture. Both types of LT/Sv oocytes, i.e. metaphase I and those that were experimentally induced to reach metaphase II, underwent activation when they were fertilized 21 hours after germinal vesicle breakdown (GVBD). Thus, the ability of LT/Sv oocytes to become activated by sperm depends on cytoplasmic maturation rather than on nuclear maturation i.e. on the progression of meiotic division. We also show that sperm penetration induces fewer Ca(2+) transients in LT/Sv oocytes than in control wild-type oocytes. In addition, we found that the levels of mRNA encoding different isoforms of protein kinase C (alpha, delta and zeta), that are involved in meiotic maturation and signal transduction during fertilization, differed between metaphase I LT/Sv oocytes which cannot be activated by sperm, and those which are able to undergo activation after fertilization. However, no significant differences between these oocytes were found at the level of mRNA encoding IP(3) receptors which participate in calcium release during oocyte fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号