首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipofuscin, an autofluorescent age pigment, occurs in enteric neurons. Due to its broad excitation and emission spectra, it overlaps with commonly used fluorophores in immunohistochemistry. We investigated the pattern of lipofuscin pigmentation in neurofilament (NF)-reactive nitrergic and non-nitrergic human myenteric neuron types. Subsequently, we tested two methods for reduction of lipofuscin-like autofluorescence. Myenteric plexus/longitudinal muscle wholemounts of small intestines of five patients undergoing surgery for carcinoma (aged between 18 and 69 years) were double stained for NF and neuronal nitric oxide synthase (nNOS). Lipofuscin pigmentation patterns were semiquantitatively evaluated by using confocal laser scanning microscopy with three different excitation wave lengths (one for undisturbed lipofuscin autofluorescence and two for specific labellings). Two pigmentation patterns could be detected in the five NF-reactive neuron types investigated. In nitrergic/spiny as well as in non-nitrergic/stubby neurons, coarse, intensely autofluorescent pigment granules were prominent. In non-nitrergic type II, III and V neurons, a fine granular, diffusely distributed and less intensely autofluorescent pigment was obvious. After incubation of wholemounts in either CuSO4 or Sudan black B solutions, unspecific autofluorescence could be substantially reduced whereas specific NF and nNOS fluorescence remained largely unaffected. We conclude that NF immunohistochemistry is useful for morphological representation of subpopulations of human myenteric neurons. The lipofuscin pigmentation in human myenteric neurons reveals at least two different patterns which can be related to distinct neuron types. Incubations of multiply stained whole mounts in both CuSO4 or Sudan black B are suitable methods for reducing autofluorescence thus facilitating discrimination between specific (immunohistochemical) and non-specific (lipofuscin) fluorescence.  相似文献   

2.
The gill withdrawal reflex (GWR) to direct gill stimulation was studied in sexually mature Aplysia and in those older by at least two months. The GWR threshold in old Aplysia was five- to sevenfold higher than that in mature animals. In the habituation paradigm, the GWR amplitude decremented rapidly to zero in old animals whereas in mature animals it persisted for at least ten trials. The GWR could not be dishabituated in old animals. The GWR is an age-dependent behavior in that parieto-visceral ganglion suppression of the GWR appears to increase with age. Also the electrophysiological properties of two neurons in the parieto-visceral ganglion were compared in the two age groups: L7 a neuron which dishabituates the GWR in mature and not in old animals; and R2 which manifests cytological changes with age. In old animals L7′s input resistance was lower, the time constant was increased, and the size of the psp evoked by gill stimulation was smaller than those of mature L7s. Similar membrane changes with age were measured in R2. Soma size of L7 was approximately the same in the two age groups as was that of R2. The physiological parameters of neurons of known function continue to change during postmetamorphic life of Aplysia.  相似文献   

3.
Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue.   总被引:19,自引:0,他引:19  
The fluorescent pigment lipofuscin accumulates with age in the cytoplasm of cells of the CNS. Because of its broad excitation and emission spectra, the presence of lipofuscin-like autofluorescence complicates the use of fluorescence microscopy (e.g., fluorescent retrograde tract tracing and fluorescence immunocytochemistry). In this study we examined several chemical treatments of tissue sections for their ability to reduce or eliminate lipofuscin-like autofluorescence without adversely affecting other fluorescent labels. We found that 1-10 mM CuSO4 in 50 mM ammonium acetate buffer (pH 5) or 1% Sudan Black B (SB) in 70% ethanol reduced or eliminated lipofuscin autofluorescence in sections of monkey, human, or rat neural tissue. These treatments also slightly reduced the intensity of immunofluorescent labeling and fluorescent retrograde tract tracers. However, the reduction of these fluorophores was far less dramatic than that for the lipofuscin-like compound. We conclude that treatment of tissue with CuSO4 or SB provides a reasonable compromise between reduction of lipofuscin-like fluorescence and maintenance of specific fluorescent labels.  相似文献   

4.
A mathematical model of burster neuron R15 from the abdominal ganglion of Aplysia is presented. This is an improvement over earlier models in that the bursting mechanism is more accurately represented. The improved model allows for simulated application of the neurotransmitter serotonin, which has been reported to have profound effects on the voltage waveform produced by R15. Computational analysis indicates that the serotonin-induced modulation of the waveform can be explained in terms of competition between stationary, bursting, and beating attractors. Analysis also indicates that, as a result of this competition, serotonin increases the sensitivity of the neuron to synaptic perturbations. This may have important consequences with regard to water balance in the Aplysia, particularly during egg laying.  相似文献   

5.
Summary Steady-state currents at hyperpolarized membrane potentials were studied in the homologous giant neurons, LP1 and R2, ofAplysia using two-electrode voltage clamp. Nearly half of the steady-state current at voltages more hyperpolarized than –70 mV had characteristics similar to the inwardly rectifying potassium current (I R) described previously inAplysia neurons. The pharmacological agents 4-bromophenacylbromide, indomethacin, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate were found to modulateI R.I R was stimulated with BPB and indomethacin and inhibited with TPA. These agents alteredI R by a mechanism independent ofcAMP, which can also modulateI R. The effects of these modulators are consistent with their actions on arachidonic acid (AA) metabolism inAplysia nervous system, suggesting AA may constitutively inhibitI R. When ganglia were perfused for 12 hr with medium containing BSA to absorb extracellular fatty acids,I R was increased nearly twofold. This increase was partially inhibited by addition of AA to the perfusion medium, and completely inhibited by pretreatment of ganglia with BPB. Although no direct effect of shortterm exposure to exogenous AA was observed, long term exposure to exogenous AA and several other unsaturated fatty acids was accompanied by a decrease inI R.  相似文献   

6.
The early or “instantaneous” current-voltage relationship for the light-activated potassium current in Aplysia giant neurons was linear during the first second of illumination. However, the light current was greatly reduced or abolished by prolonged hyperpolarization. It was also greatly reduced by the injection of calcium EGTA buffers having calcium activities of 5.6 × 10?8 M and simulated by injecting buffers with calcium activities of 2.8–5.6 × 10?7 M. Removal of calcium from the extracellular fluid had no effect. Both the light-and calcium-activated outward potassium currents were reduced by tetra-ethylammonium (TEA) ions. The light current was not affected by substituting rubidium for potassium nor by substituting either lithium or Tris for sodium. The calcium-activated potassium current persisted when the neuron was cooled to 5°C. However, the light response could no longer be elicited. Light hyperpolarizes Aplysia neurons probably by increasing intracellular calcium activity two-to six-fold which activates a membrane potassium conductance. Calcium levels appear to be restored within the cell and are energy dependent. The light-activated release of calcium is inhibited by cooling. The body wall of Aplysia transmits enough visible or 500-nm light to hyperpolarize some Aplysia giant neurons under ambient conditions. These neurons may be involved in the extraretinal light entrainment that occurs in Aplysia.  相似文献   

7.
The present study was undertaken to explore the distribution of lipofuscin in the brain of cheirogaleids by autofluorescence and compare it to other studies of iron distribution. Aged dwarf (Cheirogaleus medius) and mouse (Microcebus murinus) lemurs provide a reliable model for the study of normal and pathological cerebral aging. Accumulation of lipofuscin, an age pigment derived by lipid peroxidation, constitutes the most reliable cytological change correlated with neuronal aging. Brain sections of four aged (8–15 year old) and 3 young (2–3 year old) animals were examined. Lipofuscin accumulation was observed in the aged animals but not in the young ones. Affected regions include the hippocampus (granular and pyramidal cells), where no iron accumulation was observed, the olfactory nucleus and the olfactory bulb (mitral cells), the basal forebrain, the hypothalamus, the cerebellum (Purkinje cells), the neocortex (essentially in the pyramidal cells), and the brainstem. Even though iron is known to catalyse lipid oxidation, our data indicate that iron deposits and lipofuscin accumulation are not coincident. Different biochemical and morphological cellular compartments might be involved in iron and lipofuscin deposition. The nonuniform distribution of lipofuscin indicates that brain structures are not equally sensitive to the factors causing lipofuscin accumulation. The small size, the rapid maturity, and the relatively short life expectancy of the cheirogaleids make them a good model system in which to investigate the mechanisms of lipofuscinogenesis in primates. Am. J. Primatol. 49:183–193, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
The mathematical model described in Bertram (1993) is used to carry out a detailed examination of the manner in which the neurotransmitter serotonin modifies the voltage waveform generated endogenously by burster neuron R15 of Aplysia. This analysis makes use of a reduced system of equations, taking advantage of the slow rate of change of a pair of system variables relative to the others. Such analysis also yields information concerning the sensitivity of the neuron to brief synaptic perturbations. Received: 24 March 1993/Accepted in revised form: 9 June 1993  相似文献   

9.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   

10.
The relationship between ultrastructure and photosensitivity of pigmented neurons of the abdominal ganglion of Aplysia californica was investigated using electron microscopy and electrophysiological methods. Four identified neurons of similar light microscopic appearance were examined; two are photoresponsive and two are not. Illumination hyperpolarizes both responsive neurons. One of them, R2, requires roughly 100 times greater light intensities than does the other, the ventral photoresponsive neuron (VPN), for similar responses. Two neurons lying adjacent to VPN and similar in appearance to VPN do not have measurable electrophysiological responses to even the highest light intensities. All four neurons contained lipochondria, pigmented organelles associated with the light response. Therefore the presence of these organelles is not the only requirement for light sensitivity in these neurons. Illumination appeared to increase the number of membranous lipochondria in both R2 and the ventral neurons, but only in R2 was this increase significant. Factors such as the concentration of lipochondria near the plasma membrane may affect quantitative aspects of the light response, but in the insensitive cells the lipochondria are apparently uncoupled from other factors required for the light response.  相似文献   

11.
The monosynaptic component of the neuronal circuit that mediates the withdrawal reflex of Aplysia californica can be reconstituted in dissociated cell culture. Study of these in vitro monosynaptic connections has yielded insights into the basic cellular mechanisms of synaptogenesis and long-term synaptic plasticity. One such insight has been that the development of the presynaptic sensory neurons is strongly regulated by the postsynaptic motor neuron. Sensory neurons which have been cocultured with a target motor neuron have more elaborate structures—characterized by neurites with more branches and varicosities—than do sensory neurons grown alone in culture or sensory neurons that have been cocultured with an inappropriate target cell. Another way in which the motor neuron regulates the development of sensory neurons is apparent when sensorimotor cocultures with two presynaptic cells are examined. In such cocultures the outgrowth from the different presynaptic cells is obviously segregated on the processes of the postsynaptic cell. By contrast, when two sensory neurons are placed into cell culture without a motor neuron, thier processes readily grow together. In addition to regulating the in vitro development of sensory neurons, the motor neuron also regulates learning-related changes in the structure of sensory neurons. Application of the endogenous facilitatory trasmitter serotonin (5-HT) causes long-term facilitation of in vitro sensorimotor synapses due in part to growth of new presynatpic varicosities. But 5-HT applied to sensory neurons alone in cultuer does not produce structural changes in these cells. More recently it has been found that sensorimotor synapses in cell culture can exhibit long-term potentiation (LTP). Like LTP of some hippocampal synapses, LTP of in vitro Aplysia syanpses is regulated by the voltage of the postsynaptic cell. Pairing high-frequency stimulation of sensory neurons with strong hyperpolarization of the motor neuron blocks the induction of LTP. Moreover, LTP of sensorimotor synapses can be induced in Hebbian fashion by pairing weak presynaptic stimulation with strong postsynaptic depolarization. These findings implicate a Habbian mechanism in classical conditioning in Aplysia. They also indicate that Hebbian LTP is a phylogenetically ancient form of synaptic plasticity. 1994 John Wiley & Sons, Inc.  相似文献   

12.
Summary Lipofuscin pigment formation and distribution in the Mes. N.5 neurons, trigeminal and spinal ganglia of male Wistar rats of 2, 14, 32 and 49 months as an indication of aging has been investigated. These intraneuronal pigment granules are found as early as 2 months in all the cells, and continue to accumulate in all the cells in varying amounts until the first year of life. The different rate at which lipofuscin accumulates probably shows the difference in the maturation of the functionally related cells. At later stages the obvious findings are complex pigment body formation and localization of the pigment bodies either at one pole as seen in the Mes. N. 5 neurons or arranged submembranously parallel to the long axis of the cells in the ganglia. The vacuolated lipofuscin pigment bodies are bound by a double limiting membrane and among the vacuoles are found tubular membranous structures resembling residual mitochondrial substructures. These findings suggest a mitochondrial origin of lipofuscin, rather than a lysosomal. The intracellular pigment bodies seen in the perineuronal satellite cells of peripheral ganglia appear to be signs of removal of lipofuscin from the ganglion cells. Acknowledgements. We wish to thank Mr. J. Kirchhoff, Miss E. Heyder, Mr. W. Dresp and Mrs. M. del C. Weinrichter for the technical assistance, Mr. R. Dungan and Mrs. S. Ruelke for the photographic work. We are grateful to the DAAD and the Universitätsbund of the University of Göttingen for the financial assistance. This work was supported by the Deutsche Forschungsgemeinschaft, Grant No. G1 28, 16/17.DAAD fellow on leave from the Department of Anatomy, A.I.I.M.S., New Delhi 16, India.  相似文献   

13.
Summary The nature of acetylated Sudan Black B (aSBB) has been investigated, and it has been found, by thin layer chromatography, that each fraction of aSBB has an R f which is the same as that of a similar fraction of Sudan Black B (SBB). However, aSBB has been found to have fewer fractions, 9–12 than SBB, 14–16. The two major fractions from aSBB and SBB were examined, and a great similarity was found between the absorption spectra of the respective fractions of aSBB and SBB. The major fraction of aSBB was investigated by mass spectroscopy and found to have a similar molecular weight to that expected of SBB. This demonstrates that aSBB is not in fact acetylated, and that the components of aSBB are chemically no different from the corresponding components of SBB.  相似文献   

14.
Repeated tactile stimulation of the siphon in Aplysia normally results in habituation of the gill withdrawal reflex and a concomitant decrease in the amplitude of the excitatory synaptic input to gill motor neurons in the abdominal ganglion. It was found, however, that induced low-level tonic activity in motor neuron L9, which does not itself elicit a gill withdrawal movement, prevented habituation of the reflex from occurring. Further, in preparations already habituated, this tonic low-level activity brought about a reversal of habituation. Although tonic L9 activity prevented the occurrence of habituation or brought about its reversal, it did not interfere with the synaptic decremental process which normally accompanies gill reflex habituation. Motor neurons L7 and LDG1 were found not to possess this ability of L9 to modulate gill reflex habituation. Evidence suggests that L9's modulatory effect is mediated in the periphery, in the gill and not centrally in the abdominal ganglion.  相似文献   

15.
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.  相似文献   

16.
How aging affects the communication between neurons is poorly understood. To address this question, we have studied the electrophysiological properties of identified neuron R15 of the marine mollusk Aplysia californica. R15 is a bursting neuron in the abdominal ganglia of the central nervous system and is implicated in reproduction, water balance, and heart function. Exposure to acetylcholine (ACh) causes an increase in R15 burst firing. Whole-cell recordings of R15 in the intact ganglia dissected from mature and old Aplysia showed specific changes in burst firing and properties of action potentials induced by ACh. We found that while there were no significant changes in resting membrane potential and latency in response to ACh, the burst number and burst duration is altered during aging. The action potential waveform analysis showed that unlike mature neurons, the duration of depolarization and the repolarization amplitude and duration did not change in old neurons in response to ACh. Furthermore, single neuron quantitative analysis of acetylcholine receptors (AChRs) suggested alteration of expression of specific AChRs in R15 neurons during aging. These results suggest a defect in cholinergic transmission during aging of the R15 neuron.  相似文献   

17.
Oral administration of sodium pyrithione (NaP) causes hindlimb weakness in rodents, but not in primates. Previous work using Aplysia neurons has demonstrated that NaP produces a persistent influx of Ca2+ ions across the plasma membrane. To determine whether this also occurs in mammalian neurons and whether this could underlie the inter-species difference between rodents and primates, we have tested the effects of NaP on intracellular Ca2+ levels ([Ca2+]i) in rat and monkey motor neurons in vitro. Motor neurons present in spinal cord slices from rhesus monkey embryos (E37 and 56) and from rat E16 were dissected and cultured on glass coverslips. Following 2 weeks (rhesus) or 2-3 days (rat) in culture, neurons were loaded with fura-PE3/AM, and examined for [Ca2+]i changes in response to NaP. Rhesus motor neurons were identified by immunostaining for Islet-1 (MN specific antigen) and neuron specific enolase (NSE). Motor neurons from both species exhibited dose-dependent NaP-evoked increases in [Ca2+]i However, the dose-response curve for the Rhesus motor neurons was significantly shifted to the right of the rat dose-response curve, whereas the overall amplitude of the Ca2+ rise was similar in both species. As shown previously for the Aplysia neurons, the action of NaP is attenuated by SKF 96365, an inhibitor of store-operated calcium entry. In contrast the action of NaP is unaffected by nifedipine and tetrodotoxin, blockers of voltage-dependent Ca2+ and Na+ channels, respectively, or by ouabain, an inhibitor of the plasma membrane Na+/K+ ATPase. Our results indicate that the NaP-induced increase in [Ca2+]i is conserved across species and suggest that the toxicological sensitivity of rodent over primate to pyrithione could be due to the enhanced sensitivity of rodent motor neurons to NaP-evoked intracellular Ca2+ elevation.  相似文献   

18.
Patients with Huntington’s disease exhibit memory and cognitive deficits many years before manifesting motor disturbances. Similarly, several studies have shown that deficits in long-term synaptic plasticity, a cellular basis of memory formation and storage, occur well before motor disturbances in the hippocampus of the transgenic mouse models of Huntington’s disease. The autosomal dominant inheritance pattern of Huntington’s disease suggests the importance of the mutant protein, huntingtin, in pathogenesis of Huntington’s disease, but wild type huntingtin also has been shown to be important for neuronal functions such as axonal transport. Yet, the role of wild type huntingtin in long-term synaptic plasticity has not been investigated in detail. We identified a huntingtin homolog in the marine snail Aplysia, and find that similar to the expression pattern in mammalian brain, huntingtin is widely expressed in neurons and glial cells. Importantly the expression of mRNAs of huntingtin is upregulated by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia. Furthermore, we find that huntingtin expression levels are critical, not only in presynaptic sensory neurons, but also in the postsynaptic motor neurons for serotonin-induced long-term facilitation at the sensory-to-motor neuron synapse of the Aplysia gill-withdrawal reflex. These results suggest a key role for huntingtin in long-term memory storage.  相似文献   

19.
Summary 1. The effects of bath-applied recombinant human interleukin-1 (rhIL-1) and interleukin-2 (rhIL-2) on the calcitonin (CT)-induced outward current recorded from identified neurons (R9–R12) ofAplysia kurodai were investigated with conventional voltage-clamp and pressure ejection techniques.2. Micropressure ejection of CT onto the soma of the neuron induced a slow outward current [I o(CT); 4–6 nA in amplitude, 30–40 sec in duration] associated with a decrease in input membrane conductance.3.I o(CT) was increased by hyperpolarization.4. The extrapolated reversal potential was +10 mV. Additionally,I o(CT) was sensitive to changes in (Na+)o but not to changes in (K+)o, (Ca2+)o, and (Cl)o.5. Micropressure-ejected forskolin produced a slow outward current similar to that induced by CT.6. Bath-applied rhIL-1 and rhIL-2 (10–40 U/ml) reduced the CT-induced current in identifiedAplysia neurons without affecting the resting membrane conductance or the holding current.7. The inhibitory effects of both cytokines on the current were completely reversible. Heat-inactivated rhIL-1 and rhIL-2 were without effect.8. These results suggest that the immunomodulators, IL-1 and IL-2, can modulate the CT-induced outward current associated with a decrease in Na+ conductance in the nervous system ofAplysia. Therefore, the study suggests that these cytokines may also serve as neuromodulators.  相似文献   

20.
Immunofluorescence has been widely used to localize microbes or specific molecules in insect tissues or cells. However, significant autofluorescence is frequently observed in tissues which can interfere with the fluorescent identification of target antigens, leading to inaccurate or even false positive fluorescent labeling. The alimentary canal of the potato psyllid, Bactericera cockerelli ?ulc, exhibits intense autofluorescence, hindering the application of immunolocalization for the detection and localization of the economically important pathogen transmitted by this insect, “Candidatus Liberibacter solanacearum” (Lso). In the present study, we tested the use of irradiation, hydrogen peroxide (H2O2) and Sudan black B (SBB) treatments to reduce the autofluorescence in the B. cockerelli alimentary canal tissues. Furthermore, we assessed the compatibility of the above‐mentioned treatments with Lso immunolocalization and actin staining using phalloidin. Our results showed that the autofluorescence in the alimentary canal was reduced by irradiation, H2O2, or SBB treatments. The compatibility assays indicated that irradiation and H2O2 treatment both greatly reduced the fluorescent signal associated with Lso and actin. However, the SBB incubation preserved those target signals, while efficiently eliminating autofluorescence in the psyllid alimentary canal. Therefore, herein we propose a robust method for reducing the autofluorescence in the B. cockerelli alimentary canal with SBB treatment, which may improve the use of immunofluorescence labeling in this organism. This method may also have a wide range of uses by reducing the autofluorescence in other arthropod species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号