共查询到20条相似文献,搜索用时 8 毫秒
1.
《Insect Biochemistry》1984,14(1):115-120
The orb webs of Argiope aurantia Lucas and Argiope trifasciata (Forskal) were partitioned into three major fractions: trypsin soluble fibroin, trypsin insoluble fibroin and a water soluble fraction. The gravimetric proportions of these were nearly equal in both species. The water soluble fraction was further fractionated into KH2PO4, ninhydrin reactive and ninhydrin negative components. The proportions of these differed widely between the two species. The amino acid composition of the trypsin soluble fibroin and trypsin insoluble fibroin was ascertained, as well as the spinning gland luminal contents in order to assign the probable glandular origin of these fractions. The trypsin insoluble fibroin originates primarily from the large ampullate gland whereas the trypsin soluble fibroin appears to be the product of several glands. 相似文献
2.
3.
Wolfgan Nentwig 《Oecologia》1983,58(3):418-420
Summary Experiments with artificial webs show that there is no correlation between prey size and mesh width. The number of prey items per thread increases with mesh width. Spiders with narrow-meshed webs catch more prey, whilst spiders with wide-meshed webs save more spinning material. 相似文献
4.
5.
6.
《Current biology : CB》2020,30(16):R928-R929
7.
8.
The aim of this study was to examine top-down effects of cursorial spiders in subsidized coastal food webs. Top-down effects were examined by selectively removing cursorial spiders, mainly wolf spiders, from small islands (26–1834 m2) during 2004–2007. The removal success varied among islands and years, and spider densities were reduced by 30–65%. To examine treatment effects, arthropods were sampled using a vacuum sampling device at three occasions each summer. The densities of other arthropod predators, especially web spiders and carabids, were higher on islands where cursorial spiders had been removed compared to control islands. This treatment effect probably occurred through a combination of competitive release and reduced intraguild predation from cursorial spiders. No treatment effects were found on herbivore or detritivore densities and plant biomass. This lack of effect may either be because spiders indeed have fairly weak effects on herbivore and detritivore densities on Baltic shorelines or that the removal success of spiders was insufficient for observing such effects. Treatment effects may also be weak because negative effects exerted by spiders on herbivore and detritivore populations were balanced by increased predation by insect predators. 相似文献
9.
Wolfgang Nentwig 《Oecologia》1980,45(2):236-243
Summary 1769 prey animals were collected from the space webs of linyphiid-like spiders, i.e. actual prey, and were compared with more than 110,000 animals from nearby pitfall traps and colored traps (yellow), i.e. potential prey, by means of the Ivlev Index. The catch found in the webs proved to be very selective: certain groups were found in unexpectedly great numbers (especially phytophages insects) while others had nearly always managed to avoid the web (especially predators and pollinating insects). The spider had conducted a further selection in that it consumed only certain animals. The parameters which decide the frequency of capture and of consumption are as follows: flying ability, sense of direction, body type, size, weight and abundance. 相似文献
10.
Slowly-reversible block of glutamate receptor-channels by venoms of the spiders, Argiope trifasciata and Araneus gemma 总被引:1,自引:0,他引:1
Venom from two species of spider has been tested on the locust glutamatergic nerve-muscle system. The neurally-evoked twitch contraction of locust metathoracic retractor unguis muscle was abolished in the presence of venom and only slowly recovered following its removal. The twitch inhibition onset rate was venom concentration and stimulation frequency dependent. The mechanical response of this muscle to L-glutamate was also inhibited by spider venom. Complete abolition of the potential evoked by ionophoresis of L-glutamate to excitatory junctions on locust metathoracic extensor tibiae muscle was obtained with low concentrations of venom and recovery on washing was either slow and incomplete or not evident. The ionophoretic studies and twitch contraction studies indicate that the venom acts only when the glutamate receptor channel complex is activated by agonist. This conclusion is supported by data of the effects of venom on the voltage clamped excitatory postsynaptic current recorded from locust extensor tibiae muscle. Preliminary attempts to identify and isolate the active principles in these spider venoms indicate that activity is restricted to a molecule(s) of low (less than 1000 dalton's) molecular weight. 相似文献
11.
12.
MATJAŽ KUNTNER SIMONA KRALJ‐FIŠER MATJAŽ GREGORIČ 《Biological journal of the Linnean Society. Linnean Society of London》2010,99(4):849-866
Spider web research bridges ethology, ecology, functional morphology, material science, development, genetics, and evolution. Recent work proposes the aerial orb web as a one‐time key evolutionary innovation that has freed spider‐web architecture from substrate constraints. However, the orb has repeatedly been modified or lost within araneoid spiders. Modifications include not only sheet‐ and cobwebs, but also ladder webs, which secondarily utilize the substrate. A recent nephilid species level phylogeny suggests that the ancestral nephilid web architecture was an arboricolous ladder and that round aerial webs were derived. Because the web biology of the basalmost Clitaetra and the derived Nephila are well understood, the present study focuses on the webs of the two phylogenetically intervening genera, Herennia and Nephilengys, to establish ontogenetic and macroevolutionary patterns across the nephilid tree. We compared juvenile and adult webs of 95 Herennia multipuncta and 143 Nephilengys malabarensis for two measures of ontogenetic allometric web changes: web asymmetry quantified by the ladder index, and hub asymmetry quantified by the hub displacement index. We define a ‘ladder web’ as a vertically elongated orb exceeding twice the length over width (ladder index ≥ 2) and possessing (sub)parallel rather than round side frames. Webs in both genera allometrically grew from orbs to ladders, more so in Herennia. Such allometric web growth enables the spider to maintain its arboricolous web site. Unexpectedly, hub asymmetry only increased significantly in heavy‐bodied Nephilengys females, and not in Herennia, challenging the commonly invoked gravity hypothesis. The findings obtained in the present study support the intrageneric uniformness of nephilid webs, with Herennia etruscilla webs being identical to H. multipuncta. The nephilid web evolution suggests that the ancestor of Nephila reinvented the aerial orb web because the orb arises at a much more inclusive phylogenetic level, and all intervening nephilids retained the secondarily acquired substrate‐dependent ladder web. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 849–866. 相似文献
13.
ABSTRACT. Two strongly acidic, ninhydrin-negative compounds were found in the water soluble fraction of the orb webs of Argiope trifasciata (Lucas) and Argiope aurantia (Forskål). One of these is a derivative of taurine. Aninhydrin-positive GABA derivative, gabamide, also exists in the water-soluble fraction of the web. 相似文献
14.
Abstract Many species of orb-spinning spiders construct silk decorations within the structure of the orb-web. The evolutionary significance of these decorations is poorly understood, but the silk decorations of many species reflect UV light, suggesting that they may function to attract insects. In these species, relatively more silk decoration may be required under dimmer light conditions in order to maintain a constant UV-reflecting signal, and hence level of insect attraction. We investigated experimentally whether the orb-spinning spider Argiope aetherea adjusts the amount of silk decoration added to the web according to light conditions. Consistent with the prey-attracting function, we found that spiders adjusted the quantity of silk decoration to their webs, adding more silk decoration when the web was located in dim light rather than bright light. 相似文献
15.
A range of web-invading jumping spiders with different predatory strategies was tested with A. appensa in the laboratory: Mimetus maculosus (Mimetidae), Pholcus phalangioides (Pholcidae), Taieria erebus (Gnaphosidae), and 11 species of salticids. Spiders that are known to specialize at web-invading, either by leaping into webs or by walking slowly into webs and practising aggressive mimicry, captured A. appensa ; three salticid species not known to be web-invaders never did. Web-invaders that practised aggressive mimicry were more efficient than were species that only leapt into webs. Portia fimbriata from Queensland was the most consistent at using aggressive mimicry and was also the most efficient at catching A. appensa . Web-invaders that were more efficient at catching A. appensa were also better able to avoid setting off pumping, a special defence behaviour used by A. appensa . Portia fimbriata from Queensland was especially efficient at avoiding setting off pumping: P. fimbriata more consistently than other Portia made its final approach toward A. appensa by coming down from above the web on a dragline and making minimal contact with the web. An experiment, in which A. appensa was artificially induced to pump whenever the predator was near, provided additional evidence that pumping is effective in defending A. appensa against web-invaders. 相似文献
16.
Kensuke Nakata Samuel Zschokke 《Proceedings. Biological sciences / The Royal Society》2010,277(1696):3019-3025
Almost all spiders building vertical orb webs face downwards when sitting on the hubs of their webs, and their webs exhibit an up–down size asymmetry, with the lower part of the capture area being larger than the upper. However, spiders of the genus Cyclosa, which all build vertical orb webs, exhibit inter- and intraspecific variation in orientation. In particular, Cyclosa ginnaga and C. argenteoalba always face upwards, and C. octotuberculata always face downwards, whereas some C. confusa face upwards and others face downwards or even sideways. These spiders provide a unique opportunity to examine why most spiders face downwards and have asymmetrical webs. We found that upward-facing spiders had upside-down webs with larger upper parts, downward-facing spiders had normal webs with larger lower parts and sideways-facing spiders had more symmetrical webs. Downward-facing C. confusa spiders were larger than upward- and sideways-facing individuals. We also found that during prey attacks, downward-facing spiders ran significantly faster downwards than upwards, which was not the case in upward-facing spiders. These results suggest that the spider''s orientation at the hub and web asymmetry enhance its foraging efficiency by minimizing the time to reach prey trapped in the web. 相似文献
17.
Variable dependence on detrital and grazing food webs by generalist predators: aerial insects and web spiders 总被引:1,自引:0,他引:1
Recent studies have shown that organisms from the detritus food web subsidize generalist predators in aboveground food webs, but its significance in space and time is largely unknown. Here we report seasonal dynamics of aerial insects from grazing and detritus food webs in both forest and grassland habitats, and show how these patterns influence the dependence of web spiders on the detritus food web. Detrital insects were more abundant in spring, decreased in summer, and then increased slightly in autumn. This pattern was most conspicuous in Nematocera. Due to different seasonal activity patterns of grazing and detrital insects, the proportion of detrital insects was greater in spring and autumn. Detrital insects were relatively more abundant in the forest than in the grassland. Prey captured by web spiders generally reflected seasonal and spatial patterns of aerial insect abundance. In particular, Leucauge spiders reversed their dependence on the two food webs seasonally. Body size of spiders was negatively correlated with the proportion of detrital prey, suggesting that the detrital subsidy is essential for relatively small predators. This size effect probably resulted from interaction of the following two factors: 1) the maximum body size of prey that can be caught increased with spider body size, 2) larger body size classes of aerial insects included a higher proportion of insects from the grazing food web. 相似文献
18.
19.
Andreas Fischer Emmanuel Hung Gerhard Gries 《Entomologia Experimentalis et Applicata》2019,167(9):803-810
Females of the false black widow, Steatoda grossa CL Koch (Araneae: Theridiidae), invest significant energy and time weaving cobwebs. We tested the hypothesis that S. grossa females select sites for their webs based, in part, on the presence of con‐ or heterospecific webs, sensing both physical and chemical web cues. In bioassays, we offered female S. grossa a choice between an empty control frame and a frame bearing the web of a conspecific female or that of a female common house spider, Parasteatoda tepidarium CL Koch (Araneae: Theridiidae), recording (1) the time she spent, and (2) the time she spent inactive (a proxy for settling behaviour) on each frame. We also tested the effect of (1) silk micro‐ and macrostructure (wrapped‐up silk or intact web, each semiochemical‐deprived), (2) plastic webs, and (3) silk semiochemical extract on the responses of S. grossa females. Females settled on both con‐ and heterospecific webs and chose test stimuli based on their chemical and physical characteristics. Even plastic webs in cobweb‐like arrangement readily prompted settling behaviour by females. Our results suggest that web architecture, rather than web silk, mediates settling responses by female S. grossa on pre‐existing webs which may provide structural support for a new web and indicate habitat suitability. 相似文献
20.
BEATA EICHENBERGER EVA SIEGENTHALER MARTIN H. SCHMIDT‐ENTLING 《Ecological Entomology》2009,34(3):363-368
Abstract 1. Biotic invasions are one of the most important reasons for changes in biodiversity. The alien sheetweb spider Mermessus trilobatus (Araneae: Linyphiidae) has become abundant in large parts of Central Europe within the past three decades. Its invasion might negatively influence native spiders, for instance via competition for webs. 2. Laboratory experiments were developed to test if M. trilobatus is competitively superior to native spiders. The alien M. trilobatus and five native sheetweb spiders (Erigone dentipalpis, E. atra, Gnathonarium dentatum, Dicymbium nigrum and Micrargus herbigradus) were compared with respect to their success to take over occupied webs from E. dentipalpis. 3. The rate of web takeover or defence was determined by body size, whereby individuals with a wider thorax invaded webs more successfully. After taking body size into account, the frequency of defence or web takeover did not differ between species. In 13% of all confrontations, predation against generally smaller opponents was recorded. Contrary to the predictions, raising the web value with food resources did not raise the effort expended on web defence but reduced predation by the web owner. 4. The current study does not indicate that the invasion of the relatively small‐sized M. trilobatus is facilitated by strong competitiveness. Nevertheless, M. trilobatus may displace smaller‐sized immature specimens and thereby threaten native spiders. Still, other reasons are likely to underlie the success of M. trilobatus in Europe, such as rapid reproduction or release from natural enemies. 相似文献