首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cells dissociated from the R3230AC mammary adenocarcinoma from intact and diabetic rats were examined for insulin binding and glucose transport. The Kd for insulin binding, ~ 10?10 M, was similar in all tumors studied. However, the apparent number of receptor sites per cell increased in cells from diabetic rats. Kinetic analysis of 3-0-methyl glucose (3-OMG) entry showed both diffusional and passive carrier characteristics. Insulin (4 × 10?9 M) in vitro did not affect diffusional entry, whereas the hormone altered the passive carrier system, as reflected by an increase in Km and Vmax. Insulin decreased initial velocity of glucose transport at 4–6 mM glucose levels but increased initial velocity of glucose transport at 20 mM glucose. An explanation of the role of insulin on tumor growth in vivo from effects on glucose transport in vitro is proposed.  相似文献   

2.
D-allose, a glucose analogue, is not metabolized by isolated fatcells and its distribution space at equilibrium in the cells is the same as that of tritiated water. Uptake of allose is inhibited by glucose and 3-0-methylglucose, stimulated by insulin and virtually eliminated by cytochalasin B. Counter transport of allose out of fat-cells against a concentration gradient can be induced by exogenous glucose but not by pyruvate. It is concluded that allose is transported into fat-cells by the same carrier mediated transport system as glucose and that it is a suitable analogue with which to study the glucose transport system. Insulin stimulated allose transport, into or out of the cell, but not basal transport, is inhibited by a brief exposure of isolated fat-cells to exogenous ATP or ADP (but not AMP or AMP-PNP). The antilipolytic effect of insulin is not affected. The ATP inhibition is slowly reversible. It is suggested that ATP phosphorylates a membrane component and thereby blocks transmission of signal from the insulin receptor to the carrier system. Indirect evidence suggests that ATP does not alter the affinity of the insulin or glucose binding sites. Insulin decreases the Km of glucose metabolism to CO2 and lipid in isolated fat-cells and increases the Vmax. However, the hormone has no effect on the Ki of glucose as an inhibitor of allose transport. The glucose analogue, 3-0-methylglucose, also inhibits both glucose metabolism and allose transport. The Ki for both these processes is similar and is not affected by insulin. These results support the view that the effect of insulin on glucose transport is to raise the Vmax without a change in the Km. It appears further that sugar transport is not the major rate limiting step in metabolism at high glucose concentrations in the absence of insulin, or at most glucose concentrations in the presence of the hormone.  相似文献   

3.
It is still unknown how insulin-like growth factor-I (IGF-I) regulates cancer cell growth in the condition of the limited availability of key nutrients, such as glutamine. We investigated the effects of IGF-I on cell growth and amino acid transport in a glutamine-deprived human neuroblastoma cell line, SK-N-SH. Cell growth was measured, and 3H-labeled amino acid transport was assayed after treatment with or without IGF-I (50 ng/ml) in 2 mM (control) and 100 μM glutamine concentrations. Cell growth rates were dependent on glutamine concentrations. IGF-I stimulated cell growth in both 2 mM and 100 μM glutamine. IGF-I stimulated glutamine transport in 100 μM glutamine with the mechanism of increasing carrier Vmax, but had no effect in 2 mM glutamine. IGF-I also stimulated leucine, glutamate and 2-(methylamino)isobutyric acid transport in 100 μM glutamine. There were significant increases in [3H]thymidine and [3H]leucine incorporation in IGF-I-treated cells in both 2 mM and 100 μM glutamine. These data suggest that IGF-I stimulates cell growth by increasing amino acid transport in the condition of low glutamine levels in a human neuroblastoma cell line. This mechanism may allow to maintain cell growth even in nutrient-deprived tumor tissues.  相似文献   

4.
The regulation of hexose transport under glucose-starvation conditions was studied in cultured human skin fibroblasts. Glucose starvation enhanced the transport of 2-DG and 3-O-methyl-D-glucose (3-OMG) but not of L-glucose. Glucose-starvation enhanced transport was inhibited by cytochalasin B (10 μM). The starvation-induced change in 2-DG transport was due to an increase in the Vmax of both the high and low affinity transport sites (2.8- and 2.4-fold, respectively) with no effect on their Kms. The presence of 5.55 mM galactose, fructose, or L-glucose in the medium resulted in transport increases similar to those seen in glucose-starved cells, while the presence of 5.55 mM glucose, mannose, or 3-OMG repressed 2-DG transport. Glucose-starvation enhancement of 2-DG transport was blocked by cycloheximide (20 μg/ml) but not by actinomycin D (0.03 μg/ml) or α-amanitin (3.5 μM). Readdition of glucose (5.55 mM) for six hours to glucose-starved cells led to a rapid decrease in hexose transport that could be blocked by cycloheximide but not actinomycin D. Although readdition of 3-OMG to glucose-starved cells had little effect on reversing the transport increases, glucose plus 3-OMG were more effective than glucose alone. Serum containing cultures (10% v/v) of glucose-fed or glucose-starved cells exhibited rapid decreases in 2-DG transport when exposed to glucose-containing serum-free medium. These decreases were prevented by employing glucose-free, serum-free medium. The data indicate that hexose transport regulation in cultured human fibrob asts involves protein synthesis of hexose carriers balanced by interactions of glucose with a regulatory protein(s) and glucose metabolism as they affect the regulation and/or turnover of the carrier molecules.  相似文献   

5.
Germlings of Phytophthora palmivora possess at least two systems for the uptake of inorganic phosphate (Pi). The first is synthesized on germination in medium containing 50 M Pi and has a Km of approx. 30 M (Vmax=7–9 nmol Pi/h·106 cells). The second is synthesized under conditions of Pi-deprivation and has a higher affinity for Pi (Km=1–2 M), but a lower Vmax (0.5–2 nmol Pi/h·106 cells). The fungicide phosphite likewise enters the germlings via two different transport systems, the synthesis of which also depends on the concentration of Pi in the medium. The Km of the lower affinity system is 3 mM (Vmax=20 nmol phosphite/h·106 cells) and that of the higher affinity system is 0.6 mM (Vmax=12 nmol/h·106 cells). Pi and phosphite are competitive inhibitors for each other's transport in both systems. However, whereas mM concentrations of phosphite are necessary to inhibit Pi transport, only M concentrations of Pi are required to inhibit phosphite transport. A third system of uptake for Pi also exists, since when phosphate-deprived cells are presented with mM concentrations of Pi, they transport the anion at a very high rate (around 100 nmol/h·106 cells). High rates of transport of phosphite are also observed when these cells are presented with mM concentrations of this anion.  相似文献   

6.
Summary Cells ofCandida shehatae repressed by growth in glucose- or D-xylose-medium produced a facilitated diffusion system that transported glucose (K s±2 mM,V max±2.3 mmoles g−1 h−1),d-xylose (K s±125 mM,V max±22.5 mmoles g−1 h−1) and D-mannose, but neither D-galactose norl-arabinose. Cells derepressed by starvation formed several sugar-proton symports. One proton symport accumulated 3-0-methylglucose about 400-fold and transported glucose (K s±0.12 mM,V max ± 3.2 mmoles g−1 h−1) andd-mannose, a second proton symport transportedd-xylose (K s± 1.0 mM,V max 1.4 mmoles g−1 h−1) andd-galactose, whilel-arabinose apparently used a third proton symport. The stoicheiometry was one proton for each molecule of glucose or D-xylose transported. Substrates of one sugar proton symport inhibited non-competitively the transport of substrates of the other symports. Starvation, while inducing the sugar-proton symports, silenced the facilitated diffusion system with respect to glucose transport but not with respect to the transport of D-xylose, facilitated diffusion functioning simultaneously with thed-xylose-proton symport.  相似文献   

7.
The purpose of this study was to determine the effects of diamide, a reversible sulfhydryl oxidizing agent, on the transport of serotonin (5-HT) by mouse platelets. Diamide produced a concentration-dependent (10–200 μM) stimulation of 5-HT transport that was rapid and sustained over 0–10 minutes of incubation. When platelets were incubated with diamide (10–200 μM) in the presence of glucose, the content of reduced glutathione was significantly decreased only at a final concentration of 200 μM, while washed platelets incubated with diamide (10–200 μM), in the absence of glucose, had a significant concentration-dependent decrease in their content of reduced glutathione. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked diamide-induced stimulation of 5-HT transport. The kinetics of 5-HT transport showed that diamide caused a marked increase in the maximal rate of transport (Vmax control = 28.4 ± 1.4 vs. Vmax diamide = 60.9 ± 4.1 pM/108 platelets/4 min) but did not significantly alter the Km values. Ouabain, an inhibitor of platelet Na+-K+ ATPase, blocked the stimulation by diamide in a concentration-dependent manner. Dithiothreitol, a disulfide reducing agent, was able to partially reverse the stimulation of platelet 5-HT transport caused by diamide. This study has shown that diamide can stimulate the active transport of 5-HT by mouse platelets and suggests a possible role for free sulfhydryl groups in the regulation of this process.  相似文献   

8.
Cardiac myocytes were isolated from adult rat ventricles by a method which preserves their functional integrity, including long survival in physiological concentrations of Ca2+. Sarcolemmal glucose transport was assessed by measuring linear initial uptake rates of the nonmetabolized glucose analog3-O-methyl-d-glucose. Transport was saturable and showed competition byd-glucose and other features of chemical and stereo-selectivity. Transport was stimulated by insulin in a dose-dependent manner, resulting in an almost 5-fold increase inVmax, with little change inKm. Stimulation of 3-methylglucose transport by insulin was largely Ca2+ -dependent. Omission of Ca2+ from the incubation medium caused a minor rise in basal 3-methylglucose uptake but the insulin-stimulated rise inVmax was only 30%. The Ca2+ antagonist D600 also antagonized stimulation of hexose transport by insulin. In all the above respects, 3-methylglucose transport in myocytes is identical to that in intact heart muscle. In addition, the decrease in insulin response by Ca2+ emission was partially reversed by subsequent return to a Ca2+ -containing medium. ATP levels remained stable in the absence of Ca2+, showing that the Ca2+ dependence did not reflect nonspecific cell damage.  相似文献   

9.
K562 erythroleukaemic cells produced ascorbate when incubated with dehydroascorbic acid. The reduction depended on the number of cells and on the concentration of dehydroascorbic acid. The observed rate consists of a high affinity (apparent) Km 7 μM , Vmax 3·25 pmol min?1 (106 cells)?1 and a low affinity component, which was non-saturable up to 1 mM of DHA (rate increase of 0·1 pmol min?1 (106 cells)?1 (1 μM of DHA?1). The rate was dependent on temperature and was stimulated by glucose and inhibited by phloretin, N-ethylmaleimide, parachloro-mercuribenzoate and thenoyltrifluoroacetone. Although uptake of DHA proceeded at a higher rate than its extracellular reduction, the generation of extracellular ascorbate from DHA cannot be accounted for by intracellular reduction and the release of ascorbate, since the latter was not linear with time and had an initial rate of approximately 3 pmol min?1 (106 cells?1). At a concentration of DHA of 100 μM this is 25 per cent of the observed reduction.  相似文献   

10.
The effects of ATP on glucose transport and metabolism were studied in rat adipocytes. Over a concentration range of 10–250 μm, ATP was found to inhibit several aspects of adipocyte glucose metabolism, particularly when stimulated by insulin. Much of the effect of ATP on glucose metabolism appeared related to impairment of glucose transport, reflected by inhibition of both basal and insulin-stimulated rates of 3-O-methylglucose transport. ATP inhibited the V of insulin-stimulated 3-O-methylglucose transport, but had no effect on the Km. The inhibitory effects of ATP were much less apparent when cells were preincubated with insulin, suggesting that ATP inhibited only the components of hexose transport not yet activated by the hormone. At very high medium glucose concentrations, where transport was no longer rate limiting for metabolism, there was no inhibition of glucose oxidation by 250 μm ATP. However, when hexose transport was blocked with cytochalasin B (50 μm), a small inhibitory effect of ATP persisted on basal and insulin-stimulated glucose and fructose oxidation, suggesting that intracellular metabolism was impaired. The mechanism of the intracellular effect did not appear to be caused by uptake of exogenous ATP. These studies provide further evidence that energy metabolism may play an important role in the regulation of facilitated glucose transport.  相似文献   

11.
  1. In silicic acid-starved cells of the diatom Nitzschia alba, 68Ge(OH)4 is transported against a concentration gradient, leading to intracellular concentrations of germanic acid up to 3500 times greater than the exogenous concentrations. The accumulated substrate is osmotically active, as determined by its efflux into germanic acid-free medium.
  2. Metabolic energy is required for Ge(OH)4 transport, since uptake is completely inhibited by 1 mM DNP, 5×10-2 M sodium azide or 1 mM iodacetamide, and is strongly inhibited by CCCP and antimycin A. Inhibition of protein synthesis with 20 μg/ml cycloheximide does not affect the initial velocity of transport, but strongly reduces the steady state intracellular concentration.
  3. A double reciprocal plot of uptake velocity versus substrate concentration yields a biphasic curve. The kinetic data are consistent with the interpretation that N. alba has two transport systems for germanic acid; a high affinity-low capacity (K s=0.36 μM; V max 1.2 μmoles/108 cells/min) system and a low affinity-high capacity (K s=5 μM; V max 6.2 μmoles/108 cells/min) system.
  4. The implications of these findings for silicic acid transport and metabolism in N. alba are discussed.
  相似文献   

12.
Cultured human lymphoblastoid cells take up taurine from the medium by two processes: 1) a temperature-dependent, Na+-dependent, saturable “active”-transport system and 2) diffusion. The active transport has properties similar to those reported for taurine transport by other tissues. Apparent Km is about 25 μM and Vmax about 7.2 pmol/min/106 cells; saturation occurs at 100 μM taurine. Uptake is competitively inhibited by the β-amino acids hypotaurine (50% inhibition at 44 μM) and β-alanine (50% at 152 μM), as measured at 50 μM taurine. Taurocyamine inhibits 50% at 260 μM. Chlorpromazine and imipramine are strong uncompetitive inhibitors, giving 50% inhibition at 26 μM and 115 μM, respectively; at these concentrations cellular viability per se is not affected. Ouabain inhibits 40–50% over a concentration range of 4–500 μM. Diffusion of taurine into the cells is proportional to concentration up to 20 mM. However, at the concentration of taurine in human plasma, 40–100 μM, active transport would provide 90% of the taurine taken up.  相似文献   

13.
Melleolide sesquiterpene aryl esters are secondary products of the mushroom genus Armillaria. We compared the cytotoxicity of eleven melleolides—five thereof are new natural products—against four human cancer cell lines. Armillaridin, 4-O-methylarmillaridin, and dehydroarmillylorsellinate were most active, at IC50 = 3.0, 4.1 and 5.0 μM, respectively, against Jurkat T cells for the former two compounds, and K-562 cells for the latter. Dehydroarmillylorsellinate did not inhibit respiration and RNA-synthesis of K-562 cells at 5 μM. However, replication of DNA dropped to 35% after 120 min at this concentration, and translational activity also decreased.  相似文献   

14.
The initial rates of deoxy-D-glucose transport by cultures of growing and density-inhibited mouse embryo cells and lines of mouse cells transformed spontaneously or after infection by murine leukemia virus or murine sarcoma virus were investigated as a function of the deoxyglucose concentration. The apparent Km for deoxyglucose transport was about the same for all types of cells (1–2 mM). The Vmax of secondary cultures of mouse embryo cells decreased from 6 nmoles/106 cells/minute for sparse cultures to less than 1 nmole/106 cells/minute for density-inhibited cultures. The Vmax was about the same whether estimated in monolayer culture or in suspensions of cells dispersed by treatment with trypsin. The Vmax for deoxyglucose transport by the established cells, whether transformed spontaneously or by virus infection, was 4 to 25 times higher than that for density-inhibited mouse embryo cells and was independent of the cell density of the cultures. Deoxyglucose transport was competitively inhibited by Cytochalasin B, Persantin, glucose and 3-O-methyl-D-glucose and the apparent Ki values of inhibition were similar for the mouse embryo cells and the various cell lines. Similarly, the sensitivity of the glucose transport systems to inactivation by p-chloromercuribenzoate was about the same for all types of cells. The results suggest that the glucose transport system of the normal mouse embryo cells and the cells of the various established lines is qualitatively the same, but that the number of functional transport sites differs for the various cell lines and decreases markedly in mouse embryo cells with an increase in cell density of the cultures.  相似文献   

15.
Blood-brain barrier (BBB) transport of choline and certain choline analogs was studied in adult and suckling rats, and additionally compared in the paleocortex and neocortex of adult rats. Saturable uptake was characterized by a single kinetic system in all cases examined, and in adult rat forebrains we determined a Km= 442 ± 60 μM and Vmax= 10.0 ± 0.6 nmol min-1 g-1. In 14–15-day-old suckling forebrains a similar Km (= 404 ± 88 μM) but higher Vmax (= 12.5 ± 1.5 nmol min-1 g-1) was determined. When choline uptake was compared in two regions of the forebrain, similar Michaelis-Menten constants were determined but a higher uptake velocity was found in the neocortex (i.e. neocortex Km= 310 ± 103 μM and Vmax= 12.6 ± 2.8 nmol min-1g-1; paleocortex Km= 217 ± 76 μM and Vmax= 7.2 ± 1.5 nmol min-1 g-1). Administration of radiolabelled choline at low (5 μM) and high (100 μM) concentrations, followed by microwave fixation 60 s later and chloroform-methanol-water separations of the homogenized brain did not suggest a relationship between concentration and the appearance of label in lipid or aqueous fractions as observed in another in-vitro study elaborating two-component kinetics of choline uptake. It was observed that 60s after carotid injection 12–14% of the radiolabel in the ipsilateral cortex was found in the chloroform-soluble fraction. Hemicholinium-3 (Ki= 111 μM), dimethylaminoethanol (Ki= 42 μM), tetraethyl ammonium chloride, tetramethyl ammonium chloride, 2-hydroxyethyl triethylammonium iodide, carnitine, normal rat serum, and to a lesser extent lithium and spermidine all inhibited choline uptake in the BBB. Unsubstituted ammonium chloride and imipramine did not inhibit choline uptake. No difference was observed in blood-brain barrier choline uptake of unanesthetised, carotid artery-catheterized animals, and comparable sodium pentobarbital-anesthetized controls.  相似文献   

16.
2-Deoxy-d -glucose (2 DG) entered synaptosomes (from rat brain) by a high-affinity, Na+-independent glucose transport system with a Km, of 0.24 mM. 3-O-methyl-glucose, D-glucose, and phloretin were competitive inhibitors of 2-DG transport with Ki's of 7 mM, 64 μM, and 0·75 μM, respectively. Insulin was without effect. 2-DG uptake was also saturable at high substrate concentrations with an apparent low affinity Km, of 75 mM, where the Kl, for glucose was 17.5 mM. We are not certain whether the rate-limiting step for the low-affinity uptake system is attributable to transport or phosphorylation. However, the high-affinity glucose transport system probably is a special property of neuronal cell membranes and could be useful in helping to distinguish separated neurons from glial cells.  相似文献   

17.
The kinetic parameters Km and Vmax for urea uptake by Melosira italica were determined at 160 μeinsteins m−2 s−1 and in the dark. The transport systems showed an affinity for the substrate and a storing capacity in the dark (Km = 65.07 μM; Vmax = 2.18 nmoles 105 cells −1 h−1) greater than under 160 μE m−2 s −1 (Km = 111.2 μM; Vmax = 1.11 nmoles 105 cells−1 h−1). Similarly, a reduction in consumption rate of urea under increasing photon flux densities was observed. The use of an inhibitor (potassium cyanide) indicated that the uptake process requires metabolic energy. That urea transport is more important in darkness, may constitute a survival strategy in which this compound is utilized by cells mainly during heterotrophic growth.  相似文献   

18.
Isoproterenol (2 μM) stimulated the basal rate of 3-0-methylglucose transport into isolated human adipocytes by increasing the Vmax without changing the dissociation constant (Ks), while isoproterenol had no consistent effect on maximum insulin-stimulated glucose transport. In contrast, 1 mM 3-isobutyl-1- methylxanthine inhibited both basal and maximum insulin-stimulated transport by increasing the Ks without a significant change in Vmax. Glucose transport, therefore, is affected oppositely and by different kinetic parameters by two agents which are known to increase cyclic AMP levels in isolated human adipocytes.  相似文献   

19.
Cultured Ehrlich ascites tumor cells equilibrate d-glucose via a carrier mechanism with a Km and V of 14 mM and 3 μmol/s per ml cells, respectively. Cytochalasin B competitively inhibits this carrier-mediated glycose transport with an inhibition constant (Ki) of approx. 5·10?7 M. Cytochalasin E does not inhibit this carrier function. With cytochalasin B concentrations up to 1·10?5 M, the range where the inhibition develops to practical completion, three discrete cytochalasin B binding sites, namely L, M and H, are distinguished. The cytochalasin B binding at L site shows a dissociation constant (Kd) of approx. 1·10-6 M, represents about 30% of the total cytochalasin B binding of the cell (8·106 molecules/cell), is sensitively displaced by cytochalasin E but not by d-glucose, and is located in cytosol. The cytochalasin B binding to M site shows a Kd of 4–6·10?7 M, represents approx. 60% of the total saturable binding (14·106 molecules/cell), is specifically displaced by d-glucose with a displacement constant of 15 mM, but not by l-glucose, and is insensitive to cytochalasin E. The sites are membrane-bound and extractable with Triton X-100 but not by EDTA in alkaline pH. The cytochalasin B binding at H site shows a Kd of 2–6 · 10?8 M, represents less than 10% of the total sites (2 · 106 molecules/cell), is not affected by either glucose or cytochalasin E and is of non-cytosol origin. It is concluded that the cytochalasin B binding at M site is responsible for the glucose carrier inhibition by cytochalasin B and the Ehrlich ascites cell is unique among other animal cells in its high content of this site. Approx. 16-fold purification of this site has been achieved.  相似文献   

20.
The pattern of L-alanine uptake in isolated cells of interscapular brown adipose tissue has been determined. The uptake can be divided into the diffusion component (Kd=0.55 min–1) and a saturable Na+-dependent transport (K M =0.87 mM andV max=155 nmol/min/106 cells). The saturable component can be subdivided into MeAIB-sensitive (K M =1.63 mM andV max=162 nmol/min/106 cells) and MeAIB-insensitive (K M =3.2 mM andV max=39.5 nmol/min/106 cells). This kinetic pattern could indicate the presence of transport system (s) that resemble the commonly described transport systems for alanine uptake in several tissues.Abbreviations MeAIB Methyl-aminoisobutyric acid - AIB Aminoisobutyric acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号