首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the clinical isolates of Serratia marcescens, non-pigmented cells appeared more frequently from pigmented, drug-resistant strains than from pigmented, drug-sensitive strains. Transfer of R plasmid from Escherichia coli to pigmented strains caused spontaneous loss of pigment producibility, whereas such spontaneous loss never occurred in fresh cultures of drug-sensitive strains. The non-pigmented strain was a better recipient of R plasmid from E. coli than was the pigmented strain. R plasmid was transferred from the non-pigmented strain to the pigmented strain at a higher frequency than from E. coli to the pigmented strain. The results of the present investigation suggest that transfer of R plasmid may be one of the reasons for the significant increase of non-pigmented, drug-resistant strains of S. marcescens in nature.  相似文献   

2.
Summary To overproduce Serratia marcescens metalloprotease(SMP), various recombinant plasmids encoding SMP gene were constructed and the SMP productivities from the recombinant S. marcescens strains were examined. The recombinant S. marcescens strains indispensably required proteinaceous substrates such as casein for the extracellular production of SMP. We obtained maximum 9,100U/ml of SMP from the culture supernatant of S. marcescens ATCC27117 containing a regulatory plasmid pTSP2 encoding SMP gene fused with a strong trc99a promoter and its repressor gene lacIq, which is about 23 times higher than that of wild type strain. SMP produced from the recombinant S. marcescens(pTSP2) was 88.3% of total extracellular proteins.  相似文献   

3.
pIJ1008, a Rhizobium leguminosarum plasmid which determines hydrogen uptake ability and symbiotic functions in pea was transferable to three of seven natural isolates of R. meliloti tested. In these three strains, pIJ1008 was maintained stably with the respective sym megaplasmid indigenous to each R. meliloti strain. These strains carrying both plasmids nodulated alfalfa but not pea. By reisolation and examination of the strains from alfalfa nodule tissue, it was shown that pIJ1008 continued to be maintained but that pea-nodulation ability was suppressed.In one strain of R. meliloti which carries a 200 kb cryptic plasmid (in addition to a megaplasmid), the transfer and selection for pIJ1008 resulted in the loss of the cryptic plasmid.In three separate plant growth experiments, alfalfa nodules induced by each of the R. meliloti strain carrying both sym plasmids were assayed for hydrogen uptake activity. The average activity was 40-, 3.5-and 2-fold higher than with the respective pIJ1008-free strains. However, this higher activity was not accompanied by an increase in plant biomass or nitrogen content of shoots.C.B.R.I. Contribution Number: 1478  相似文献   

4.
Summary Plasmid R46 was successfully transferred from Escherichia coli K-12 into Myxococcus xanthus strain MD-1 but not into M. xanthus strain XK. Plasmid R68.45 was transferred from E. coli K-12 into both strains of M. xanthus. The effects of these plasmids on survival of M. xanthus after ultraviolet (UV)-254 nm irradiation, the ability of M. xanthus to reactivate irradiated myxophages, and Weigle reactivation of UV-irradiated myxophages by M. xanthus were studied. Plasmid R46 had no effect on UV survival of M. xanthus, but increased the host's ability to reactivate irradiated myxophages. Plasmid R68.45 protected M. xanthus strains MD-1 and XK against the lethal effects of UV irradiation and also increased the host's ability to reactivate irradiated myxophages.  相似文献   

5.
Rhizobium leguminosarum strain VF39, isolated from nodules of field-grown faba beans in the Federal Republic of Germany, was shown to contain six plasmids ranging in molecular weight from 90 to 400 Md. Hybridisation to nif gene probes, plasmid curing, and mobilisation to other strains of Rhizobium and to Agrobacterium showed that the third largest plasmid, pRleVF39d (220 Md), carried genes for nodulation and nitrogen fixation. This plasmid was incompatible with pRL10JI, the Sym plasmid of R. leguminosarum strain JB300. Of the other plasmids, the two smallest (pRleVF39a and pRleVF39b, 90 and 160 Md respectively) were shown to be self-transmissible at a low frequency. Although melanin production is as yet unreported in strains of R. leguminosarum biovar viceae, strain VF39 produced a dark pigment, which, since it was not produced on minimal media and its production was greatly enhanced by the presence of tyrosine in the media, is probably melanin-like. Derivatives of VF39 cured of pRleVF39a no longer produced this pigment, but regained the ability to produce it when this plasmid was transferred into them. Strains of Agrobacterium tumefaciens, R. meliloti, and some strains of R. leguminosarum carrying pRleVF39a did not produce this pigment, indicating perhaps that some genes elsewhere on the VF39 genome are also involved in pigment production. Plasmid pRleVF39a appeared to be incompatible with the cryptic Rhizobium plasmids pRle336b and pRL8JI (both ca. 100 Md), but was compatible with the R. leguminosarum biovar phaseoli Sym plasmids pRP1JI, pRP2JI and pRph51a, all of which also code for melanin production. The absence of pRleVF39a in cured derivatives of VF39 had no effect on the symbiotic performance or competitive ability of this strain.  相似文献   

6.
We examined 27 strains of chickpea rhizobia from different geographic origins for indigenous plasmids, location and organization of nitrogen fixation (nif) genes, and cultural properties currently used to separate fast- and slow-growing groups of rhizobia. By using an in-well lysis and electrophoresis procedure one to three plasmids of molecular weights ranging from 35 to higher than 380 Mdal were demonstrated in each of 19 strains, whereas no plasmids were detected in the eight remaining strains. Nitrogenase structural genes homologous to Rhizobium meliloti nifHD, were not detected in plasmids of 26 out of the 27 strains tested. Hybridization of EcoRI digested total DNA from these 26 strains to the nif probe from R. meliloti indicated that the organization of nifHD genes was highly conserved in chickpea rhizobia. The only exception was strain IC-72 M which harboured a plasmid of 140 Mdal with homology to the R. meliloti nif DNA and exhibited also a unique organization of nifHD genes. The chickpea rhizobia strains showed a wide variation of growth rates (generation times ranged from 4.0 to 14.5 h) in yeast extract-mannitol medium but appear to be relatively homogeneous in terms of acid production in this medium and acid reaction in litmus milk. Although strains with fast and slow growth rates were identified, DNA/DNA hybridization experiments using a nifHD-specific probe, and the cultural properties examined so far do not support the separation of chickpea rhizobia into two distinct groups of the classical fast- and slow-growing types of rhizobia.  相似文献   

7.
Cucurbit yellow vine disease (CYVD) is caused by disease-associated Serratia marcescens strains that have phenotypes significantly different from those of nonphytopathogenic strains. To identify the genetic differences responsible for pathogenicity-related phenotypes, we used a suppressive subtractive hybridization (SSH) strategy. S. marcescens strain Z01-A, isolated from CYVD-affected zucchini, was used as the tester, whereas rice endophytic S. marcescens strain R02-A (IRBG 502) was used as the driver. SSH revealed 48 sequences, ranging from 200 to 700 bp, that were present in Z01-A but absent in R02-A. Sequence analysis showed that a large proportion of these sequences resembled genes involved in synthesis of surface structures. By construction of a fosmid library, followed by colony hybridization, selection, and DNA sequencing, a phage gene cluster and a genome island containing a fimbrial-gene cluster were identified. Arrayed dot hybridization showed that the conservation of subtracted sequences among CYVD pathogenic and nonpathogenic S. marcescens strains varied. Thirty-four sequences were present only in pathogenic strains. Primers were designed based on one Z01-A-specific sequence, A79, and used in a multiplex PCR to discriminate between S. marcescens strains causing CYVD and those from other ecological niches.  相似文献   

8.
Two hundred twenty-six strains of Vibrio anguillarum collected from cultured ayu (Plecoglossus altivelis) between 1978 and 1980 were studied for their sensitivities to 10 chemotherapeutics. In order to determine whether the drug-resistant strains possessed transferable R plasmids, they were conjugated with Escherichia coli. Almost all the strains isolated during the 3 years showed resistance to nalidixic acid (NA) and/or furazolidone (NF). NA and NF resistance were not transferred to Escherichia coli from any of the strains. Chloramphenicol-resistant strains were isolated in every year and almost all of them carried transferable R plasmids. Only one strain with tetracycline resistance was found among the strains tested. Strains resistant to sulfonamides, streptomycin, ampicillin (ABP), and trimethoprim (TMP) increased rapidly in 1980, and a large number of them carried transferable R plasmids. Transferable R plasmids encoded with resistance to ABP and TMP were detected for the first time in V. anguillarum strains. The R plasmids detected in the strains isolated in 1980 were classified into incompatibility groups E, A, and an untypable group. The R plasmid DNAs were cleaved by EcoRI to yield 11 to 13 fragments. The estimated molecular weights of the R plasmids from the five strains ranged from 97 to 104 M daltons.  相似文献   

9.
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not only the pSym plasmid but also other plasmids containing symbiosis-related genes, with a similar organization. In contrast, strains belonging to other bean-nodulating species seem to have acquired only the pSym plasmid from R. etli.  相似文献   

10.
Rhizobium huakuii nodulates Astragalus sinicus, an important green manuring crop in Southern China, which can be used as forage. The plasmid profiles of 154 R. huakuii strains were examined with the Eckhardt procedure. The plasmid number of the strains varied from one to five, and their molecular weights were estimated from 42 to 600 mDa or more. The plasmids were hybridized with probes nodABC and nifHDK. The results showed that there was one plasmid carrying the nod and nif genes in the strains that harbor two or more plasmids, and the molecular weights of the symbiotic plasmids varied from 117 to 251 mDa. Homology was not observed on plasmids in the strains having only one plasmid; presumably the symbiotic genes are on the chromosome. Plasmid curing was carried out with the Bacillus subtilus sacB to generate derivatives of Rhizobium huakuii strain CH203, which harbors three plasmids, pRHa(97MD), pRHb(168MD), and pRHc(251MD). The largest plasmid (pRHc) carried both nodulation and nitrogen fixation genes. When pRHc was cured, the strain lost its symbiotic ability. The other two plasmids were also related to symbiosis. The derivative cured of pRHb did not nodulate on the host plant, had an altered lipopolysaccharide, and grew much more slowly than the parent strain. Curing of the smallest plasmid (pRHa) resulted in delaying the strain nodulation and made it lose nitrogen fixation ability. Curing of each plasmid in strain CH203 reduced its acid tolerance. Complementation of plasmid-cured strains with appropriate plasmids restored their original phenotypes. Received: 18 December 1996 / Accepted: 28 March 1997  相似文献   

11.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

12.
The colonization ability of Pseudomonas fluorescens F113rif in alfalfa rhizosphere and its interactions with the alfalfa microsymbiont Sinorhizobium meliloti EFB1 has been analyzed. Both strains efficiently colonize the alfalfa rhizosphere in gnotobiotic systems and soil microcosms. Colonization dynamics of F113rif on alfalfa were similar to other plant systems previously studied but it is displaced by S. meliloti EFB1, lowering its population by one order of magnitude in co-inoculation experiments. GFP tagged strains used to study the colonization patterns by both strains indicated that P. fluorescens F113rif did not colonize root hairs while S. meliloti EFB1 extensively colonized this niche. Inoculation of F113rif had a deleterious effect on plants grown in gnotobiotic systems, possibly because of the production of HCN and the high populations reached in these systems. This effect was reversed by co-inoculation. Pseudomonas fluorescens F113 derivatives with biocontrol and bioremediation abilities have been developed in recent years. The results obtained support the possibility of using this bacterium in conjunction with alfalfa for biocontrol or rhizoremediation technologies.  相似文献   

13.
Local beneficial rhizobacteria were selected based upon their ability to control the fungus Fusarium oxysporum f. sp. radicis-lycopersici which causes crown and root rot of tomato. Seven out of 384 strains prevailed in multiple and dual cultures and were identified as Pseudomonas chlororaphis (one strain), Bacillus cereus (one strain), Serratia marcescens (three strains) and Serratia rubidaea (two strains), by sequencing the 16S rRNA or the 16S and 23S rRNA inter-spacer region. The seven selected rhizobacteria were tested for their biocontrol and growth-promoting effects in planta, and their antifungal properties in vitro. All strains significantly reduced disease severity under controlled conditions, in a gnotobiotic system and in pots. Moreover, one P. chlororaphis and one S. marcescens strain significantly decreased disease severity to the level of the healthy control under natural conditions in pots experiments. The inhibitory activity of bacterial liquid cultures' metabolites on the fungus was demonstrated for all strains in vitro, using filter paper, thin layer chromatography and microtiter bioassays. Genes encoding phenazines were tentatively detected by PCR in the P. chlororaphis strain and chitinase-encoding genes were detected in one S. rubidaea and all three S. marcescens strains. Production of phenazine-1-carboxamide and hydrogen cyanide was evidenced for the P. chlororaphis strain while protease activity and production of siderophore-like compounds was confirmed in all bacterial strains. Possible use of these strains as biological control agents and their impact on natural biocontrol of pathogens in soils is discussed.  相似文献   

14.
A high‐catalase‐producing strain, which was isolated from sludge containing hydrogen peroxide, was identified as Serratia marcescens SYBC08 by 16S rDNA sequence analysis. Serratia spp. was reported as non‐spore‐forming bacterium (except S. marcescens spp. sakuensis), but in our study electron microscopic observation revealed that the strain did produce spores. The content of the main fatty acid C16:0 (14.8%) was significantly different from that of S. marcescens spp. sakuensis (33.2%) and S. marcescens spp. marcescens DSM 30121T (34.8%), and the biochemical characteristics were not identical to those of S. marcescens spp. sakuensis. We speculate that the relatively high catalase activity and the spore structures may enable the strain to survive in a hydrogen peroxide environment. The most suitable carbon and nitrogen sources for the catalase production by S. marcescens SYBC08 were citric acid and corn steep liquor powder. A strategy of carbon metabolism regulation to enhance the catalase production was exploited. In the 7‐L fermenter, catalase production (20 353 U/mL) obtained in the presence of glucose and citric acid was 1.68‐ and 1.31‐fold higher than that obtained in the presence of glucose or citric acid, at equimolar carbon concentration. This production yield was much higher than that of many catalase‐producing strains, but only slightly lower than the production by Micrococcus luteus (34 601 U/mL). The results suggest that the new spore‐forming S. marcescens SYBC08 is a potential candidate for the production of catalase.  相似文献   

15.
16.
Summary Several genes of the lysine biosynthetic pathway were cloned separately on the high copy number plasmid pBR322 (Richaud et al. 1981). These hybrid plasmids were used to transform an Escherichia coli strain TOC R 21 that overproduces lysine due to mutations altering the aspartokinase reaction. The synthesis of lysine was studied in these different strains. It appears that only plasmids containing the dapA gene (encoding dihydrodipicolinate synthetase) lead to an increase in lysine production. This result allows us to identify this reaction as the limiting biosynthetic step in strain TOC R 21 and indicates that such a method of gene amplification can be used to improve strains overproducing metabolites.  相似文献   

17.
Hemolysin as a marker for Serratia   总被引:3,自引:0,他引:3  
All Serratia marcescens strains (total of 33) of different sources were hemolytic including clinical strains previously classified as being nonhemolytic. DNA fragments of the two hemolysin genes hybridized with the chromosomal DNA of S. marcescens, S. liquefaciens, S. kiliensis, S. grimesii, S. proteamaculans, S. plymutica, S. rubridaea which were also hemolytic. The restriction pattern of the hemolysin locus differed in each strain. S. ficaria and S. marinorubra expressed a different hemolysin which was much smaller than the S. marcescens hemolysin since it diffused through dialysis membranes. The DNA of the latter strains did not hybridize with the S. marcescens hemolysin DNA probes. Some S. marcescens strains, S. kiliensis and S. liquefaciens also expressed in addition the small hemolysin. No hybridization was found with DNA of Escherichia coli, Salmonella typhimurium, Proteus mirabilis, Proteus vulgaris, Citrobacter freundii, Enterobacter cloacae, Klebsiella arerogenes, Klebsiella pneumoniae, Shigella dysenteriae, Yersinia enterocolitica, Yersinia pseudotuberculosus, Listeria sp., Aeromonas sp., Legionella sp. and a Meningococcus sp., indicating that the hemolysin DNA probes are specific for Serratia, or that the hemolysin genes occur rarely in genera other than Serratia.  相似文献   

18.
Six endophytic strains isolated from surface-sterilized rice roots and stems of different rice varieties grown in the Philippines were characterized. They were analyzed by physiological and biochemical tests, SDS-PAGE of whole-cell protein patterns, DNA-DNA hybridization and 16S rDNA sequencing. SDS-PAGE of whole-cell patterns showed that the six isolates fell into two subgroups which were similar but not identical in protein patterns to S. marcescens. The phylogenetic analysis of 16S rDNA sequences of two representative strains IRBG 500 and IRBG 501 indicated that they were closely related to S. marcescens(more than 99% identity). Physiological and biochemical tests corroborated that the isolates were highly related to each other and to S. marcescens. In cluster analysis, all six isolates were clustered together at 93% similarity level and grouped closely with Serratia marcescens at 86% similarity level. DNA-DNA hybridization studies revealed that the isolates shared high similarity levels with S. marcescens(≥86% DNA-DNA binding), indicating they belong to the same species. However, the isolates differed in several biochemical characteristics from the type strain. They produce urease and utilize urea and L(+) sorbose as a substrate, which is different from all known Serratia reference strains. These results suggest that the six endophytic isolates represent a novel, non-pigmented subgroup of S. marcescens.  相似文献   

19.
Summary Episomes of E. coli, which cover argG but not the str region, were transferred to Serratia marcescens. Ribosomal proteins from these hybrid strains were analyzed with phospho-cellulose or carboxymethyl-cellulose column chromatography. Two E. coli ribosomal proteins, L21 and S15, could be detected in the ribosome from the hybrid strains in addition to the ribosomal proteins of S. marcescens.  相似文献   

20.
Potent bacteria for production of chillproofing enzyme were isolated during screening tests on 1670 strains of microorganisms.

All but one of these bacteria were classified as Serratia marcescens and the exceptional strain was tentatively designated as B–103. These bacteria produced an extracellular proteolytic enzyme which prevented chill haze of beer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号