首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine macrophage monolayers treated with cisplatin, lipopolysaccharide (LPS), muramyl dipeptide (MDP) or recombinant interferon-gamma (rIFN gamma) were observed to have significantly increased tumoricidal activity. rIFN gamma had synergistic effects with cisplatin, LPS or MDP in activating macrophages. However, MDP showed much more pronounced synergism with cisplatin and LPS than with rIFN gamma. Supernatants collected from these activated macrophage monolayers also showed increased tumoricidal activity. Tumor cell lysis mediated by cisplatin-treated macrophages did not require priming with rIFN gamma though it may be necessary as a first signal for the increased macrophage activation with LPS and MDP.  相似文献   

2.
beta-Glucans are major structural components of fungi. We have recently reported that the pathogenic fungus Pneumocystis carinii assembles a beta-glucan-rich cell wall that potently activates alveolar macrophages to release pro-inflammatory cytokines and chemokines. Purified P. carinii beta-glucans predictably induce both cytokine generation and associated neutrophilic lung inflammation. Herein, we demonstrate that P. carinii beta-glucan-induced macrophage stimulation results from activation of NF-kappaB. Although analogous to macrophage activation induced by bacterial lipopolysaccharide (LPS), P. carinii beta-glucan-induced macrophage NF-kappaB activation exhibits distinctly different kinetics, with slower induction and longer duration compared with LPS stimulation. Macrophage activation in response to P. carinii beta-glucan was also substantially inhibited with the NF-kappaB antagonist pyrrolidine dithiocarbamate. In addition to different kinetics of NF-kappaB activation, P. carinii beta-glucan and LPS also utilize different receptor systems to induce macrophage activation. Macrophages from Toll-like receptor 4-deficient and wild type mice produced equivalent amounts of tumor necrosis factor alpha when stimulated with P. carinii beta-glucan. However, Toll-like receptor 4-deficient macrophages were refractory to stimulation with LPS. In contrast, MyD88-deficient macrophages exhibited a significant (though partial) blunted response to P. carinii beta-glucan. These data demonstrate that P. carinii beta-glucan acts as potent inducer of macrophage activation through NF-kappaB utilizing cellular receptors and signaling pathways distinct from LPS.  相似文献   

3.
Macrophage cell death plays a role in many physiological and pathophysiological conditions. Previous work has shown that macrophages can undergo caspase-independent cell death, and this process is associated with Nur77 induction, which is involved in inducing chromatin condensation and DNA fragmentation. Here we show that autophagy is a cytosolic event that controls caspase-independent macrophage cell death. Autophagy was induced in macrophages treated with lipopolysaccharides (LPSs) and the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), and the inhibition of autophagy by either chemical inhibitors or by the RNA interference knockdown of beclin (a protein required for autophagic body formation) inhibited caspase-independent macrophage cell death. We also found an increase in poly(ADP-ribose) (PAR) polymerase (PARP) activation and reactive oxygen species (ROS) production in LPS + Z-VAD-treated macrophages, and both are involved in caspase-independent macrophage cell death. We further determined that the formation of autophagic bodies in macrophages occurs downstream of PARP activation, and PARP activation occurs downstream of ROS production. Using macrophages in which receptor-interacting protein 1 (RIP1) was knocked down by small interfering RNA, and macrophages isolated from Toll/interleukin-1 receptor-domain-containing adaptor inducing IFN-beta (TRIF)-deficient mice, we found that TRIF and RIP1 function upstream of ROS production in LPS + Z-VAD-treated macrophages. We also found that Z-VAD inhibits LPS-induced RIP1 cleavage, which may contribute to ROS over-production in macrophages. This paper reveals that TRIF, RIP1, and ROS production, as well as PARP activation, are involved in inducing autophagy, which contributes to caspase-independent macrophage cell death.  相似文献   

4.
5.
Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP-activated protein kinase (AMPK) produces anti-inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin-1 beta (IL-1β), IL-6 and tumour necrosis factor alpha (TNF-α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP-activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose-dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL-1β, IL-6 and TNF-α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS-induced macrophage activation if AMPK was in deficient through siRNA-mediated approaches. Further, the anti-inflammatory effects produced by VitB6 or AICAR in LPS-treated macrophages were abolished in DOK3 gene knockout (DOK3−/−) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS-induced both systemic inflammation and acute pneumonia in wild-type mice, but not in DOK3−/− mice. VitB6 prevents LPS-induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.  相似文献   

6.
Oil-induced guinea pig peritoneal exudate macrophages were found to incorporate actively [3H]thymidine without any tissue fluids such as conditioned medium, lymphokines or inflammatory tissue exudates. The [3H]thymidine incorporation was markedly suppressed by macrophage stimulants such as muramyl dipeptide (MDP) or bacterial lipopolysaccharide (LPS), while glucosamine incorporation was simultaneously increased by these stimulants. The degree of suppression of thymidine incorporation depended on the cell density, the concentrations of the stimulants, and sera or culture media used. The exposure of macrophages to MDP for 30 min was sufficient to cause significant suppression.  相似文献   

7.
Bacterial colonization is a secondary feature of many lung disorders associated with elevated cytokine levels and increased leukocyte recruitment. We hypothesized that, alongside macrophages, the epithelium would be an important source of these mediators. We investigated the effect of LPS (0, 10, 100, and 1000 ng/ml LPS, up to 24 h) on primary human lung macrophages and alveolar type II epithelial cells (ATII; isolated from resected lung tissue). Although macrophages produced higher levels of the cytokines TNF-alpha and IL-1beta (p < 0.0001), ATII cells produced higher levels of chemokines MCP-1, IL-8, and growth-related oncogene alpha (p < 0.001), in a time- and concentration-dependent manner. Macrophage (but not ATII cell) responses to LPS required activation of ERK1/2 and p38 MAPK signaling cascades; phosphorylated ERK1/2 was constitutively up-regulated in ATII cells. Blocking Abs to TNF-alpha and IL-1beta during LPS exposure showed that ATII cell (not macrophage) MCP-1 release depended on the autocrine effects of IL-1beta and TNF-alpha (p < 0.003, 24 h). ATII cell release of IL-6 depended on autocrine effects of TNF-alpha (p < 0.006, 24 h). Macrophage IL-6 release was most effectively inhibited when both TNF-alpha and IL-1beta were blocked (p < 0.03, 24 h). Conditioned media from ATII cells stimulated more leukocyte migration in vitro than conditioned media from macrophages (p < 0.0002). These results show differential activation of cytokine and chemokine release by ATII cells and macrophages following LPS exposure. Activated alveolar epithelium is an important source of chemokines that orchestrate leukocyte migration to the peripheral lung; early release of TNF-alpha and IL-1beta by stimulated macrophages may contribute to alveolar epithelial cell activation and chemokine production.  相似文献   

8.
The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.  相似文献   

9.
Addition of interferon (IF) inducers pyran copolymer, poly(I)-poly(C), an ether extract of Brucella abortus (Bru-Pel), or Salmonella typhimurium lipopolysaccharide (LPS) to cultures of peritoneal macrophages in vitro enhanced their cytotoxic activity for MBL-2 lymphoblastic leukemia cells. To evaluate the role of induced IF in the macrophage activation, highly specific rabbit anti-L-cell IF globulin was added to resting macrophage cultures at the same time as the macrophage-activating agents. Macrophage activation by these various biological and synthetic agents was totally neutralized by anti-IF globulin but not by normal rabbit globulin. Similarly, the anti-IF globulin inhibited the ability of chromatography-purified Newcastle disease virus-induced IF to render macrophages cytotoxic, and the degree of neutralization of IF titer corresponded with the inhibition of IF-induced macrophage-mediated cytotoxicity. In contrast, macrophage activation by concanavalin A-induced lymphokine, which contains an antigenically different IF, was not affected by high titers of the anti-L-cell IF antibodies. The results indicate that endogenously generated type I IF may play an important role in control of macrophage function.  相似文献   

10.
Macrophage C3 receptors are normally immobilized in the plane of the cells' plasma membrane and are unable to promote phagocytosis even though they promote avid particle binding. We have previously identified a lymphokine that activates macrophage C3 receptors for phagocytosis both in vitro and in vivo, and others have found that certain types of nonimmunologically mediated inflammation are also able to activate mononuclear phagocyte C3 receptors. These findings raised the possibility that macrophage C3 receptor activation is a universal consequence of inflammation. We sought in the present experiments to determine whether or not inflammation induced by microbial infection in a nonimmune host resulted in activation of macrophage C3 receptors. We injected mice i.p. with either viable microorganisms, microbe-containing immune complexes, or bacterial LPS. Macrophages were harvested by peritoneal lavage 4 days later; nearly all lavage fluids grew the microorganism with which the mouse had been injected, indicating that an infection had been established. Monolayers of macrophages were established and their interaction with sheep E coated with C3 (EIgMC) was determined. All macrophages bound EIgMC, but only macrophages from mice injected with either very high concentrations of LPS or microbe-containing immune complexes ingested them. C3 receptors of macrophages that ingested EIgMC were mobile; others were not. Thus, inflammation induced by microbial infection does not commonly, if at all, activate macrophage C3 receptors; microbe-containing immune complexes and high concentrations of LPS do. The mechanism of receptor activation in each case is C3 receptor mobilization, which is probably mediated by a lymphokine.  相似文献   

11.
Bronchopulmonary dysplasia is a common pulmonary complication of extreme prematurity. Arrested lung development leads to bronchopulmonary dysplasia, but the molecular pathways that cause this arrest are unclear. Lung injury and inflammation increase disease risk, but the cellular site of the inflammatory response and the potential role of localized inflammatory signaling in inhibiting lung morphogenesis are not known. In this study, we show that tissue macrophages present in the fetal mouse lung mediate the inflammatory response to LPS and that macrophage activation inhibits airway morphogenesis. Macrophage depletion or targeted inactivation of the NF-κB signaling pathway protected airway branching in cultured lung explants from the effects of LPS. Macrophages also appear to be the primary cellular site of IL-1β production following LPS exposure. Conversely, targeted NF-κB activation in transgenic macrophages was sufficient to inhibit airway morphogenesis. Macrophage activation in vivo inhibited expression of multiple genes critical for normal lung development, leading to thickened lung interstitium, reduced airway branching, and perinatal death. We propose that fetal lung macrophage activation contributes to bronchopulmonary dysplasia by generating a localized inflammatory response that disrupts developmental signals critical for lung formation.  相似文献   

12.
Mouse peritoneal macrophages were activated to become cytotoxic against B16-BL6 melanoma cells by the combination of subthreshold amounts of murine interferon-gamma (IFN-gamma; 0.1 to 10 U/ml) and N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP; 0.001 to 10 micrograms/ml), but not by the combination of pH 2-treated IFN-gamma and MDP, heat-treated IFN-gamma and MDP, or IFN-gamma and the inactive stereoisomer of MDP, N-acetyl-muramyl-D-alanyl-D-isoglutamine (MDP-D). The encapsulation of intact IFN-gamma and MDP within the same liposome preparation was synergistic for macrophage activation. In contrast, the presentation of identical concentrations of IFN-gamma and MDP in separate liposome preparations did not activate macrophages. These data allow us to conclude that the encapsulation of genetically engineered IFN-gamma and synthetically produced MDP within the same liposome is highly efficient in producing synergistic activation of tumoricidal properties in mouse macrophages.  相似文献   

13.
The biochemical mechanisms by which macrophages become activated to the tumoricidal state are poorly understood. To investigate the role of calcium in this process, the effect of calcium channel blockers and calmodulin antagonists on the acquisition of tumoricidal properties by macrophages activated by a number of different agents was examined. Activation of thioglycollate-stimulated C57BL/6 mouse peritoneal macrophages by macrophage activation factor (MAF) plus LPS, IFN-gamma plus LPS or the calcium ionophore, A23187, was inhibited in a dose-dependent fashion by the calcium channel blockers nifedipine and verapamil. These agents blocked the influx of 45Ca into macrophages activated by MAF plus LPS. Macrophage activation was also inhibited by chlorpromazine, W-7, and calmidazolium at concentrations known to perturb calmodulin function. The data suggest that activation of macrophages to the tumoricidal state is a calcium-dependent process involving the participation of calcium-regulated biochemical reactions whose activities can be modulated by pharmacological agents that frustrate transmembrane calcium fluxes and/or inhibit calmodulin function.  相似文献   

14.
Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.  相似文献   

15.
16.
A synthetic bacterial cell wall constituent, muramyl dipeptide (MDP), was found to induce the enhancement of macrophage spreading and attachment on glass or plastic surfaces. Macrophages exposed to bacterial lipopolysaccharide or lymphokine-containing cell supernatants showed similar enhancement. This finding supports the view that MDP activates macrophages. MDP was also found to enhance the viability of macrophages but to inhibit 3H-thymidine incorporation by macrophages.  相似文献   

17.
High blood pressure (HBP) is an important risk factor for cardiac, renal, and vascular dysfunction. Excess inflammation is the major pathogenic mechanism for HBP-induced target organ damage (TOD). N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a tetrapeptide specifically degraded by angiotensin converting enzyme (ACE), reduces inflammation, fibrosis, and TOD induced by HBP. Our hypothesis is that Ac-SDKP exerts its anti-inflammatory effects by inhibiting: 1) differentiation of bone marrow stem cells (BMSC) to macrophages, 2) activation and migration of macrophages, and 3) release of the proinflammatory cytokine TNF-alpha by activated macrophages. BMSC were freshly isolated and cultured in macrophage growth medium. Differentiation of murine BMSC to macrophages was analyzed by flow cytometry using F4/80 as a marker of macrophage maturation. Macrophage migration was measured in a modified Boyden chamber. TNF-alpha release by activated macrophages in culture was measured by ELISA. Myocardial macrophage activation in mice with ANG II-induced hypertension was studied by Western blotting of Mac-2 (galectin-3) protein. Interstitial collagen deposition was measured by picrosirius red staining. We found that Ac-SDKP (10 nM) reduced differentiation of cultured BMSC to mature macrophages by 24.5% [F4/80 positivity: 14.09 +/- 1.06 mean fluorescent intensity for vehicle and 10.63 +/- 0.35 for Ac-SDKP; P < 0.05]. Ac-SDKP also decreased galectin-3 and macrophage colony-stimulating factor-dependent macrophage migration. In addition, Ac-SDKP decreased secretion of TNF-alpha by macrophages stimulated with bacterial LPS. In mice with ANG II-induced hypertension, Ac-SDKP reduced expression of galectin-3, a protein produced by infiltrating macrophages in the myocardium, and interstitial collagen deposition. In conclusion, this study demonstrates that part of the anti-inflammatory effect of Ac-SDKP is due to its direct effect on BMSC and macrophage, inhibiting their differentiation, activation, and cytokine release. These effects explain some of the anti-inflammatory and antifibrotic properties of Ac-SDKP in hypertension.  相似文献   

18.
Rat and mouse alveolar macrophages have almost no spontaneous tumoricidal activity and are only slightly activated by muramyldipeptide (MDP). When MDP was carried by serum albumin, the activation was higher than with free MDP but only at high concentration. When MDP was bound to a neoglycoprotein (mannosylated serum albumin) - which binds to the sugar binding receptor at the macrophage cell surface and is actively endocytosed - the activation of rat or mouse alveolar macrophages is dramatically enhanced even at very low concentration of neoglycoprotein -bound MDP. Furthermore, neoglycoprotein -bound MDP injected i.v. or i.p. was found to be able to activate alveolar macrophages, the activity of which was maximal after 48 hours in mice and 72 hours in rats. Such conjugates have so potential values as new immunostimulant agents in cancer and parasite therapy.  相似文献   

19.
Early biochemical events in the response of murine peritoneal macrophages to bacterial lipopolysaccharide (LPS) have been examined (i.e., 0-4 hr after initiation of treatment). At concentrations of 10 ng/ml or less, LPS stimulated the new or enhanced synthesis of a series of at least six polypeptides of 85, 80, 75, 65, 57, and 38 kD. This effect was dependent upon the lipid A moiety of LPS as lipid A itself could induce the changes and the effect of LPS could be blocked by inclusion of polymixin B sulfate in the culture medium. The effect was specific for LPS in that other endotoxin-free agents known to alter macrophage physiology could not produce the same changes. The time course of LPS stimulation of macrophage protein synthesis was remarkable in that the synthesis of all six proteins was transient even in the continued presence of LPS, being first detected approximately 1 hr after exposure and no longer apparent by 8-10 hr after treatment was initiated. Furthermore, both pulse-chase and cumulative radiolabeling studies indicated that at least two of the proteins (85 and 38 kD) were short-lived and did not accumulate in LPS-treated cells, suggesting the possibility that they participate in a regulatory rather than a functional role. Macrophage tumoricidal activation involves cooperation in response to two independent signals; interferon gamma and LPS. Pretreatment of macrophages with interferon gamma increased the sensitivity of macrophages to LPS-stimulated protein synthesis by one to two orders of magnitude documenting such cooperativity in molecular terms. The LPS-induced stimulation of specific protein synthesis could be reproduced by treatment of macrophages with heat killed Listeria monocytogenes, a gram-positive, endotoxin-negative bacterial stain which has been shown to substitute effectively for LPS in macrophage tumoricidal activation. Furthermore, reversible inhibition (i.e., treatment with cycloheximide) of protein synthesis during LPS treatment abrogated the acquisition of tumoricidal function. These results identify an early biochemical response to LPS which may be a necessary component of the intracellular transduction of signals which regulate macrophage functional development.  相似文献   

20.
Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号