首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurosecretory system of the giant garden slug Limax maximus was studied using the alcian blue/alcian yellow (AB/AY) staining technique for neurosecretion. Stainable cells could be identified in the paired cerebral, pleural, parietal, and buccal ganglia, and in the visceral ganglion. The cells occur as single cells or in groups of up to 100, with diameters ranging between 10 and 70 mu m. Axon tracts could only be traced for a small number of cells; neurohemal areas were not conclusively identified. The morphological similarities of the neurosecretory system of L. maximus is compared with that of other investigated stylommatophoran slugs.  相似文献   

2.
Summary In the four species of elasmobranchs examined (Triakis scyllia, Heterodontus japonicus, Scyliorhinus torazame, Dasyatis akajei), all identifiable caudal neurosecretory cells and their corresponding neurohemal areas showed urotensin II (UII)-immunoreactivity with varied intensity. To localize urotensin I (UI) in the caudal neurosecretory system of the dogfish, Triakis scyllia, h-CRF (1–20) antiserum that cross-reacts with UI was used in place of UI antiserum. CRF/UI-immunoreactivity was demonstrated in the neurosecretory cells and neurohemal areas. A considerable number of neurons showed both UII- and CRF/UI-immunoreactivities, suggesting that UII and UI are produced in the same neurosecretory cells. However, some neurons exhibited UII-immunoreactivity, but no CRF/UI-immunoreactivity. Cells immunoreactive only to CRF antiserum were not detected. At least two populations of neurons exist in the dogfish caudal neurosecretory system: (i) cells immunoreactive for both CRF/UI and UII, and (ii) cells immunoreactive for UII. The dorsal cells of the lamprey, Lampetra japonica, did not react with either UII or CRF antiserum.  相似文献   

3.
Summary The neurosecretory system of the freshwater snail Bulinus truncatus was investigated. With the Alcian blue-Alcian yellow (AB/AY) staining method at least 10 different types of neurosecretory cells (NSC) were distinguished in the ganglia of the central nervous system. The differences in staining properties of the NSC — with AB/AY the cells take on different shades of green and yellow — are borne out at the ultrastructural level: the NSC types contain different types of neurosecretory elementary granules.The neurosecretory system of B. truncatus is compared to that of Lymnaea stagnalis, the species which has received the most attention among the pulmonates. It appears from the comparison that the systems of both species show many similarities, although some differences are also apparent.  相似文献   

4.
5.
Desert locust corpora cardiaca have been treated with hydrolytic enzymes in saline solution in order to facilitate separation of individual intrinsic cells. Some of the enzymes digested the basal lamina covering the corpus cardiacum, and also the intercellular cementing substance. Living neurosecretory cells with axonal projections could be isolated and observed by phase contrast microscopy or by darkfield illumination. By morphological criteria the secretory cells should be characterized as neurons, and two different types of secretory neurons have been identified. Brownian movement of cytoplasmic particles occurs in damaged cells and is regarded as a post mortem phenomenon.  相似文献   

6.
Changes in the neurosecretory cell cytology of I. exustus subjected to hypertonic saline (0.1 ml of 1.5%/snail) loading and thermal stress (35°C) for two hours, have been investigated. Of the two types of neurosecretory cells A and B that are present in the central nervous system (CNS) of I. exustus, striking changes were evident only in B cells. After both treatments, there was about 33% decline in NSM (Neurosecretory material) intensity. However, the nuclear diameter of B cells was significantly (P < 0.001) increased in the snails administrated with hypertonic saline unlike in those exposed to 35°C wherein significant (P < 0.005) decline was evident. The adaptive significance of the neuroendocrine system of I exustus is discussed in relation to hydrothermal stress.  相似文献   

7.
Summary The histology of the corpus cardiacum (c. card.) and the hypocerebral ganglion of Calliphora has been described from sections mainly stained with paraldehyde-fuchsin (PAF) and counterstained with Halmi's mixture. Concurrently the nervous connections of these organs with the neurosecretory system and the stomatogastric nervous system were studied.Neurosecretory material from the medial neurosecretory cells of the brain (m.n.c.) could be traced through the cardiac-recurrent nerve, and passing through the c. card. it was seen to be abundantly present in the wall of the aorta and the two pairs of nerves leaving the c. card.-hypocerebral ganglion complex posteriorly, i.e. the aortic and the oesophageal nerves. However, in some old, fed flies a considerable amount of neurosecretory material was also observed in anastomosing branches of the cardiac-recurrent nerve inside the c. card. Thus storage of neurosecretory material originating in the m.n.c. may take place both in the aorta wall and in the c. card. This observation is relevant to the interpretation of previous experiments of E. Thomsen (1952).The c. card. cells proper (the c.n.c.) were not stained by the PAF, although they are known to be neurosecretory.This work was supported by grants from the Carlsberg Foundation. I am grateful to Professor C. Overgaard Nielsen for laboratory facilities.  相似文献   

8.
Summary By means of electron microscopy, in the median eminence of Rana temporaria, the terminal arborizations of axons of six different types of neurosecretory cells, located in the pars ventralis of the tuber cinereum, were identified. In addition, phenomena connected with the release of neurosecretory material from the axon terminals of these neurosecretory cells into the blood capillaries of the median eminence are described.Preliminary results suggested the existence, in the median eminence, of additional different neurosecretory axon types which could also belong to corresponding neurosecretory cell types probably located in the apical part of the pars ventralis of the tuber cinereum. Moreover, in the external region of the normal median eminence, separate monoaminergic nerve fibres were tentatively identified. Arguments are adduced which plead (1) against the assumption that the ependyma or the pituicytes of the median eminence could produce adenohypophysiotropic hormones; (2) against the inference that the ependymal cells of the median eminence might be involved in the transport of adenohypophysiotropic hormones from the cerebrospinal fluid into the blood capillaries of the median eminence.  相似文献   

9.
Tony Thulborn 《Ichnos》2013,20(3-4):207-222

The most recent account of Bueckeburgichnus maximus Kuhn 1958, a distinctive theropod dinosaur track from the Lower Cretaceous of Germany, is shown to be based on a referred specimen mistakenly identified as the holotype and the correct name of this taxon is deemed to be Megalosauripus maximus (Kuhn 1958). This minor revision has important consequences for nomenclature of the many European, Asian, North American and Australian dinosaur tracks attributed to megalosaurian theropods. Many of those tracks were named Megalosauripus, but that name has a confusing multiplicity of meanings and it should be restricted to the highly characteristic dinosaur track formerly identified as Bueckeburgichnus. Other tracks named "Megalosauripus”; (in its several other senses) will require new nomenclature, despite their extensive and repeated revision since 1996. It is recommended that future revision should adopt conventions of the International Code of Zoological Nomenclature. Although previous revisions expressed an intention to adhere to those conventions, these were not put into practice, with the unfortunate result of multiplying the problems that surround the nomenclature of megalosaur tracks. Introduction of the name Megalosauripus maximus (Kuhn 1958) eliminates those burgeoning problems and permits the introduction of new and objective nomenclature for presumed megalosaur tracks.  相似文献   

10.
1. The presence of insulin-like substances has been demonstrated by immunocytochemistry in the central nervous system of the snail Helix aspersa. 2. The immunopositivity has been observed especially in the large perikarya of the mesocerebral green cells [the cerebral green cells (CeGC) stained in green by the alcian blue:alcian yellow technique]. 3. The removal of either the mesocerebrum or the CeGC stops the growth of the snail and induces the increase of the glycogen content in the mantle edge. 4. Our results show the existence of insulin-like material in the neurosecretory cells. Previous data having demonstrated the presence of specific binding sites to insulin in the cephalic ganglia of Helix aspersa, one may suggest that insulin could play a neuromodulatory or a neurotransmittory role in the central nervous system and might control the growth.  相似文献   

11.
Dietary restriction extends lifespan in diverse organisms, but the gene regulatory mechanisms and tissues mediating the increased survival are still unclear. Studies in worms and flies have revealed a number of candidate mechanisms, including the target of rapamycin and insulin/IGF‐like signalling (IIS) pathways and suggested a specific role for the nervous system in mediating the response. A pair of sensory neurons in Caenorhabditis elegans has been found to specifically mediate DR lifespan extension, but a neuronal focus in the Drosophila nervous system has not yet been identified. We have previously shown that reducing IIS via the partial ablation of median neurosecretory cells in the Drosophila adult brain, which produce three of the seven fly insulin‐like peptides, extends lifespan. Here, we show that these cells are required to mediate the response of lifespan to full feeding in a yeast dilution DR regime and that they appear to do so by mechanisms that involve both altered IIS and other endocrine effects. We also present evidence of an interaction between these mNSCs, nutrition and sleep, further emphasising the functional homology between the DILP‐producing neurosecretory cells in the Drosophila brain and the hypothalamus of mammals in their roles as integration sites of many inputs for the control of lifespan and behaviour.  相似文献   

12.
Primary cell cultures were prepared from a major neurosecretory center of the adult locust brain, the pars intercerebralis, in order to characterize neurosecretory cells growingin vitro. Individual pars intercerebralis could be removed free of surrounding tissue and dissociated by mechanical treatment. Mature neurosecretory neurons of different sizes regenerate new neurites during the initial three daysin vitro in serum-free medium. They show a tendency to sprout one primary neurite from which fine processes develop. By means of electron microscopy, we observed the integrity of the cellular organelles, indicating that cultured neurons are healthy, and we were able to distinguish three types of neurosecretory neurons on the basis of the ultrastructural aspects of the neurosecretory material. These three types have the same ultrastructural characteristics asin situ neuroparsin, ovary maturing parsin and locust insulin related peptide neurons. Immunogold labelling at the electron microscopic level, using the two available specific antibodies, anti-neuroparsin and anti-ovary maturing parsin, confirms the morphological characterization of neuroparsin and ovary maturing parsin cells. These results show for the first time that cultured locust neurosecretory neurons behave like thosein vivo, in terms of their ultrastructure and immunocytochemistry. Moreover, the presence of recently-formed neurosecretory material both in the Golgi zone of the perikaryon and in the neuronal processes indicates that cultured neurons have functional capacity since they are able to synthesizede novo and to transport the neurosecretory material along the neurite. Thus our well-characterized culture system provides a suitable invitro model to investigate the secretory mechanism of locust neurosecretory neurons.  相似文献   

13.
Summary

Corpora cardiaca of Locusta migratoria, contain the axon endings of the neurosecretory cells of the brain and store in neurosecretory granules a variety of mostly unidentified neurohormones. Homogenates of corpora cardiaca served to generate a battery of monoclonal antibodies screened by their immunoreactivity to antigenic determinants present in the neurosecretory cells of the pars intercerebralis in the brain. The results are illustrated with three selected monoclonal antibodies which recognize antigens located within the neurosecretory granules of the pericarya of the pars intercerebralis, the cerebro-cardiac axon tracts and the axonic endings in the neurohaemal part of the corpora cardiaca. The apparent molecular weights of these antigenes were determined by Western blotting. We discuss the potential of these monoclonal antibodies for the isolation and structure determination of neuropeptides.  相似文献   

14.
Histochemical studies of the nervous system of Fasciola gigantica and Fasciola hepatica were undertaken. Neurosecretory cells were detected by Gomori's aldehydefuchsin, Bargmann's chrome hematoxylin-phloxin, Mallory's triple stain, periodic acid-Schiff, Heidenhain's Azan and alcian blue after potassium permanganate oxidation. Two types of neurosecretory cells were recognized and designated as "A" and "B". Type "A" cells occurred in small numbers in the brain and subesophageal mass and type "B" cells ubiquitous in distribution. The reactions of these cells to the standard stains for neurosecretory substance generally, were less intense than the neurosecretory cells of other animals such as crustaceans and insects. The structure, organisation, distribution and cytochemistry of neurosecretory cells in Fasciola gigantica and Fasciola hepatica is discussed.  相似文献   

15.
Sessile filter‐feeding marine sponges (Porifera) have been reported to possess high efficiency in removing bacteria pollution from natural or aquaculture seawater. However, no investigation has been carried out thus far in a true mariculture farm water system. Therefore this study sought to investigate the ability of the marine sponge Hymeniacidon perlevis to bioremediate the bacteria pollution in the intensive aquaculture water system of turbot Scophthalmus maximus. Sponge specimens were hung in fish culture effluent at different temperature to investigate the optimal temperature condition for bacteria removal by H. perlevis. Turbots S. maximus were co‐cultured with sponge H. perlevis in 1.5 m3 of water system at 15–18°C for 6 weeks to control the growth of bacteria. It was found that H. perlevis was able to remove pathogenic bacteria efficiently at 10–20°C, with a maximal removal of 71.4–78.8% of fecal coliform, 73.9–98.7% of pathogenic vibrio, and 75.0–83.7% of total culturable bacteria from fish‐culture effluent at 15°C; H. perlevis continuously showed good bioremediation of bacteria pollution in the S. maximus culture water system, achieving removal of 60.0–90.2% of fecal coliform, 37.6–81.6% of pathogenic vibrio, and 45.1–83.9% of total culturable bacteria. The results demonstrate that H. perlevis is an effective bioremediator of bacteria pollution in the turbot S. maximus culture farm water system. Biotechnol. Bioeng. 2010;105: 59–68. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

17.
An arbitrary classification scheme is presented for the thirteen distinct types of secretory cells distinguished within the central nervous system of Dermacentor variabilis by several specific and general neurosecretory staining techniques. Comparisons to classic arthropod neurosecretory cell types are made and the histochemical implications of the chromophilic response of various secretory products are discussed. Dermacentor cells of Types I, VII, IX and X may be considered neurosecretory on the basis of intracellular elaboration and discharge of secretory product. Type II, III, IV, V, VI, XI and XII cells are considered as putative neurosecretory cells although secretory products were detected only within the perikarya. The large Type XII cells are also similar to motor neurones reported from other arachnids. Cells of Types VIII and XIII appear to be glial elements. The secretory products of Type XIIIA are distributed within trabecular processes in the subperineurium. These products may play a trophic role or they may have some endocrine function as a form of “gliosecretion”.  相似文献   

18.
  • 1 Neurosecretary cells in the central nervous system of the adult blowfly, Phormia regina Meig., have been examined histologically using the parparaldehyde-fuchsin and Gomori's staining method. Six groups of the neurosecretory cells occur in each hemisphere of the brain, the medial, frontal, lateral A, lateral B, posterior I and posterior II groups. In the subesophageal ganglion, four B-cells and two A-cells are present. In the thoracico-abdominal ganglion, ten A-cells are found in the thoracic region and a total of about 50 A- and B-cells in the hind part of the abdominal region.
  • 2 A comparison with the neurosecretory system of two other species of blowfly, Calliphora erythrocephala Meig., Sarcophaga bullata Parker, and the housefly, Musca domestica L., showed similar arrangements and grouping.
  • 3 Neurosecretory granules have been observed along the axons originating from the medial neurosecretory cells of the brain, and the thoracico-abdominal ganglion. The granules originating from the medial groups can be traced directly to the corpus cardiacum from which they move to the aorta, crop duct and cardia through axons.
  • 4 There is with advancing age a gradual increase in the size of cell bodies and nuclei of the median neurosecretory cells in both females and males of Phormia regina, and also a decrease in stainable granules. This increase in size is dependent on nutrition, with no increase in water alone, a slight increase on sugar, and a maximum increase on sugar and liver. Corresponding increases in size occur in the ovaries in connection with feeding the same substances.
  相似文献   

19.
Abstract The brain of Nephtys contains four neurosecretory cell types with distinctive cytoplasmic inclusions, a cells are located uniquely in a single pair of ganglionic nuclei and b cells are represented by a single pair of cells, whereas c cells and d cells have a scattered distribution. Their axons form two types of secretory release structure. First, possible axon collaterals synapse upon slender “dentritic twigs” in the core of the brain. Secondly, two tracts descend to the brain floor to form a “neurosecretory neuropile” (or storage and release complex) in contact with the inner surface of the brain capsule. Other neurosecretory fibres penetrate through the capsule, branch extensively, and terminate in contact with its ventral surface in close association with the “infracerebral gland”. The gland is derived from the pericapsular epithelium and exhibits signs of specialization for glandular function. In contrast to certain other polychaetes, it does not contain secretory neuron perikarya. The secretory end-foot system is poorly developed. Its terminals are located adjacent to the neurosecretory neuropile, which they encircle. The cell bodies are probably represented by four e cells which, like the terminals, contain many mitochondria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号