首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of chronic lead (Pb) exposure on neuronal electric membrane properties (EMP) were determined using neural cell cultures of adult mouse dorsal root ganglia (DRG). Cultures were exposed to Pb concentrations ranging from 0 to 100 microM for 12 days (8 DIV to 20 DIV). EMP were determined in Pb-free medium either immediately after withdrawal (IWD), or 6 days after withdrawal (6WD) from Pb. For IWD, regression analysis indicated that a number of EMP varied significantly with increasing Pb concentration. The largest such change occurred for electrical excitability which decreased significantly with increasing Pb (P = 0.000), being reduced by approximately two-thirds for neurons exposed to 100 microM Pb; resting membrane potential increased with Pb (P = 0.000); membrane time constant decreased with Pb (P = 0.007); action potential afterhyperpolarization decreased with Pb (P = 0.023). There was also evidence that the time course of action potentials was accelerated with increasing Pb concentrations, the rate of fall of neurons with biphasic falling phases being particularly increased (P = 0.047). This general pattern of altered EMP was observed for the 6WD condition also, indicating that chronic exposure to Pb caused persistent abnormalities in neuronal membranes even after 6 days of cultivation in Pb-free medium. The patterns of alterations in EMP suggested that chronic Pb exposure caused a prolonged increase in potassium permeability. It was proposed that the latter was mediated through a Pb-induced increase in intracellular ionic calcium and the associated disruption of calcium homeostasis.  相似文献   

2.
Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The disturbances in body folate homeostasis such as intestinal malabsorption in alcoholism are well-known contributor to folate deficiency associated disorders. The study was sought to delineate the kinetic features of folate transport in intestinal absorptive epithelium that could highlight insights of malabsorption during alcoholism. We studied [3H]-folic acid transport in intestinal brush border membrane (BBM) after 3 months of ethanol administration at 1 g/kg body weight/day to rats. The results showed that the folate transport exhibited saturable kinetics and was pH, Na+, temperature, divalent cation sensitive, besides –SH group(s) was/were found important in the folate transport system to be efficiently operative. Importantly, the decreased intestinal BBM folate transport in chronic alcoholism was associated with increased K m and decreased V max during alcoholism. In addition, S–S group status of the transporter and presence of Na+ at the absorptive site seems to be perturbed during ethanol ingestion. However, H+/folate coupled transport provided the driving force for transport as pH optimum in acidic range was not altered during alcoholism. The inhibition constants of methotrexate and unlabelled folic acid revealed that the two analogues are handled differently by the folate transport system. In addition, the low activity of folate transport system during chronic ethanol exposure was associated with low RBC folate levels. Overall, these findings suggest that the deregulated folate transport kinetics might contribute to intestinal folate malabsorption in alcoholism.  相似文献   

3.
Summary The embryogenetic responseof culturedDaucus carota L. ‘Queen Anne's Lace’ callus was employed to attempt fractionation and identification of a repressive factor produced byCitrus medica L. ovules. The factor was evidently synthesized and released into the medium continuously, inasmuch as citron ovules that had been autoclaved with the medium were completely infeffective. The inhibition could be attributed to volatile and nonvolatile components. A substantial part of the inhibition was prevented by continuously refereshing the atmosphere within the cultures with filtered air. Monitoring of the gases produced by citron ovule sections under conditions simulating bioassays disclosed significant evolution of carbon dioxide, ethylene and ethanol. Repression of embryogenesis was not averted by trapping the liberated ethylene. On the other hand, ethanol in concentrations equivalent to those released by citron ovules suppressed asexual embryogenesis dramatically. The adverse effect of ethanol was reversed immeditaley upon transfer to ethanol-free medium. Another investigation had disclosed anti-embryogenetic effects of auxin, abscisic acid and gibberellin. Analysis ofCitrus ovules excised from young fuits disclosed those of monoembryonic citron to contain concentrations of IAA, ABA and GA3 several times higher than those of polyembryonic Ponkan mandrain. The nonvolatile protion might be identified with these hormonal substances. This paper is part of B. Tisserat's PhD. dissertation in Botany at the University of California, Riverside. The research was supported in part by the Elvenia J. Slosson Fellowship in Ornamental Horticulture awarded to T. Murashige.  相似文献   

4.
In this study, we examined the mechanistic insights of folate reabsorption during alcoholism, considering enhanced renal excretion as one of the major contributing factors to alcohol-induced folate deficiency. Male Wistar rats were fed 1g/kg body weight/day ethanol (20% solution) orally for 3 months. The results on characterization of the folate transport system in renal basolateral membrane (BLM) suggested it to be a carrier-mediated, acidic pH-dependent and saturable one. Chronic ethanol feeding decreased the uptake mainly by increasing the K m and decreasing the V max of the transport process at the BLM surface. At the molecular level, reduced folate transport activity in renal tissue during chronic ethanol ingestion was attributable to decreased expression of reduced folate carrier (RFC) and folate binding protein (FBP). Antibodies against RFC protein revealed a parallel change in RFC expression in both brush border and BLM surfaces during chronic alcoholism. Such findings highlight the role of downregulation of RFC and FBP expression and provide mechanistic insight into the observed reduced folate transport efficiency at renal absorptive surfaces in alcoholism, which may result in low blood folate levels commonly observed in alcoholics.  相似文献   

5.
Low concentrations of ethanol enhanced prostaglandin (PG) E1-stimulated adenosine-3′, 5′-cyclic monophosphate (cAMP) accumulation in human platelets and in rat brain slices. Ethanol also potentiated platelet synthesis of PGE1 from dihomo-gamma-linolenic acid. These interactions may derive from the fluidizing effects of ethanol on lipid-containing cell membranes, and suggest a possible role for PGE1 as a mediator of certain acute effects of ethanol. The derivative possibility that “down regulation” of PGE1 systems is involved in the development of ethanol dependence is supported by data showing that PGE1 administered to mice following chronic exposure to ethanol reduced withdrawal syndrome intensity.  相似文献   

6.
The electrical membrane properties (EMP) of adult mouse dorsal root ganglion (DRG) neurons were characterized by an extensive electrophysiological investigation of 450 cells. The neurons were divided into two types: an M-type having an action potential with monophasic falling phase and a B-type with a more complex biphasic or triphasic falling phase. Compared to M-type, B-type were “slow” neurons with a higher specific membrane resistance (Rm), and a longer time constant (τ), duration of action potential (Δt), and absolute refractory period (ARP). B-type also had a larger amplitude action potential, afterhyperpolarization and positive overshoot. The action potential of the M-type neuron had only a Na+ component while that of the B-type had both a Na+ and a Ca2+ component. After two days in culture, M-type neurons exhibited phase bright cytoplasmic granules, which were seldom observed for B-type neurons. Although neuron survival remained constant during the first six days in culture (DIV), the relative frequency of occurrence of the M-type decreased from 82 to 50%. Thereafter, it decreased more gradually to a final value of approximately 20% after 40 DIV. It was concluded that at least during the first 6 DIV and possibly through to 40 DIV, M-type neurons transformed into B-type. Both M- and B-type neurons showed significant and similar changes in their EMP with increasing DIV (up to 40 DIV). For M- and B-types combined, Rm increased approximately 142%, τ by 204%, and no significant change in specific membrane capacitance was observed. Rheobasic threshold depolarization decreased 58%, while the resting membrane potential decreased by only 19%. These changes in the EMP of adult neurons are strikingly similar to changes in EMP observed in adult denervated muscle and in cultures of either embryonic nerve or muscle. This similarity suggested that the adult DRG neurons in cell culture undergo progressive dedifferentiation because of isolation from their usual trophic interactions. Determination of neuronal membrane electrical characteristics provides a new method for evaluating the effects of various possible trophic agents, e.g., hormones and tissue extracts, on the state of differentiation of neurons in cell culture.  相似文献   

7.
Studies of neural, hepatic, and other cells have demonstrated thatin vitroethanol exposure can influence a variety of membrane-associated signaling mechanisms. These include processes such as receptor-kinase phosphorylation, adenylate cyclase and protein kinase C activation, and prostaglandin production that have been implicated as critical regulators of chondrocyte differentiation during embryonic limb development. The potential for ethanol to affect signaling mechanisms controlling chondrogenesis in the developing limb, together with its known ability to promote congenital skeletal deformitiesin vivo,prompted us to examine whether chronic alcohol exposure could influence cartilage differentiation in cultures of prechondrogenic mesenchyme cells isolated from limb buds of stage 23–25 chick embryos. We have made the novel and surprising finding that ethanol is a potent stimulant ofin vitrochondrogenesis at both pre- and posttranslational levels. In high-density cultures of embryonic limb mesenchyme cells, which spontaneously undergo extensive cartilage differentiation, the presence of ethanol in the culture medium promoted increased Alcian-blue-positive cartilage matrix production, a quantitative rise in35SO4incorporation into matrix glycosaminoglycans (GAG), and the precocious accumulation of mRNAs for cartilage-characteristic type II collagen and aggrecan (cartilage proteoglycan). Stimulation of matrix GAG accumulation was maximal at a concentration of 2% ethanol (v/v), although a significant increase was elicited by as little as 0.5% ethanol (approximately 85 mM). The alcohol appears to directly influence differentiation of the chondrogenic progenitor cells of the limb, since ethanol elevated cartilage formation even in cultures prepared from distal subridge mesenchyme of stage 24/25 chick embryo wing buds, which is free of myogenic precursor cells. When limb mesenchyme cells were cultured at low density, which suppresses spontaneous chondrogenesis, ethanol exposure induced the expression of high levels of type II collagen and aggrecan mRNAs and promoted abundant cartilage matrix formation. These stimulatory effects were not specific to ethanol, since methanol, propanol, and tertiary butanol treatments also enhanced cartilage differentiation in embryonic limb mesenchyme cultures. Further investigations of the stimulatory effects of ethanol onin vitrochondrogenesis may provide insights into the mechanisms regulating chondrocyte differentiation during embryogenesis and the molecular basis of alcohol's teratogenic effects on skeletal morphogenesis.  相似文献   

8.
The effects of chronic exposure (21 days) to ethanol vapors on locomotor response to intracerebroventricular (i.c.v.) administration of corticotropin releasing factor (CRF) was investigated in male Wistar rats. Responses to CRF were tested during chronic exposure, 1 1/2 hours following removal of ethanol vapors, and two weeks after withdrawal of ethanol. A greater sensitivity to the locomotor-activating effects of CRF was found in ethanol-treated rats as compared to their controls during ethanol exposure (P less than 0.001) and 90 min following removal of ethanol vapors (P less than 0.001) but not two weeks following withdrawal. These results support clinical findings of a reversible activation in the hypothalamic-pituitary-adrenal (HPA) axis in alcoholism. In addition, it appears that chronic exposure to ethanol can also modify central neuronal systems specifically responsive to the locomotor activating effects of CRF.  相似文献   

9.
Withdrawal of a utilizable nitrogen source during mid G1 of the cell cycle induces gametic differentiation in synchronously grown vegetative cultures of Chlamydomonas reinhardi. Cell division accompanies gametic differentiation in such cultures, and the ability of mid G1 vegetative cells to form gametes is matched by their ability to undergo a round of cell division after nitrogen withdrawal. Synchronously grown cultures require up to 19 hr in nitrogen-free medium to complete a round of division and to form mating-competent cells. Asynchronously grown liquid cultures require less time after nitrogen withdrawal (generally 5–8 hr) to achieve mating competency. In these cultures cell division did not necessarily accompany gametic differentiation since gametic differentiation took place in induced cultures at high cell concentrations which prevented cell division. Maximum mating competency was achieved in less than 2 hr after induction of vegetative cells grown on agar plates. Little cell division was observed during that short induction interval. The relationship between the attainment of mating competency (gametogenesis) and other physiological events resulting from nitrogen withdrawal is discussed.  相似文献   

10.
The effects of environmental ethanol on larva-to-pupa survival and on the activities of four enzymes were investigated in three Drosophila melanogaster strains. The strains had different allelic combinations at the Odh and Aldox loci on their third chromosomes, but they all carried the Adh S -Gpdh F allelic combination on the second chromosome. Replicates of each of the strains were exposed to three different ethanol treatments: (i) no ethanol in the medium (control); (ii) 5% ethanol for a single generation (short-term exposure); (iii) 5% ethanol for 20 generations (long-term exposure). In all experiments, the activities of four enzymes (ADH, ODH, GPDH and AOX) were measured in larvae, pupae and adults. The results showed that (i) the larval and adult metabolic responses to environmental ethanol were different; (ii) enzyme activity changes under short-term exposure differed from those measured under long-term exposure; (iii) the activities of the allozymes common to all strains (ADH-S and GPDH-F), differed depending on the genetic background. Changes in larva-to-pupa survival were seen when the larvae of control and exposed lines of the three strains were confronted with various concentrations of ethanol. In all three strains, the exposed lines had significantly higher initial survival rate and ethanol tolerance than the control lines. Strain-specific differences were observed in the ethanol tolerance of both types of line. Received: 26 November 1996 / Accepted: 14 February 1997  相似文献   

11.
Abstract: The goal of this investigation was to examine whether postreceptor sites [Gq/11 protein and phospholipase C (PLC) isozymes] of the phosphoinositide signal transduction system are involved in neuroadaptational mechanisms in the brain during chronic ethanol consumption. It was observed that acute ethanol treatment has no effect on the immunolabeling of PLC-β1, -γ1, and -δ1 and the α subunit of Gq/11 protein in the rat cortex as determined by western blotting using specific monoclonal antibodies. On the other hand, chronic ethanol consumption (15 days) resulted in a significant decrease in the immunolabeling of PLC-β1, whereas under identical conditions, the immunolabeling of PLC-γ1 and -δ1 isozymes was not significantly altered. The decreased immunolabeling of PLC-β1 during chronic ethanol consumption was not altered by 24 h of withdrawal after 15 days of ethanol consumption. The immunolabeling of the α subunit of Gq/11 protein was significantly decreased after 15 days of ethanol consumption but had returned to normal levels after 24 h of ethanol withdrawal. Also, chronic ethanol treatment resulted in a significant decrease in phosphatidylinositol 4,5-bisphosphate-specific PLC activity, which remained the same after 24 h of ethanol withdrawal. These results suggest that decreased PLC activity during ethanol consumption and its withdrawal may be due to decreased protein levels of the Gq/11 protein-coupled PLC-β1 isozyme but not the PLC-γ1 or -δ1 isozyme in the rat cortex. It is possible that changes in the protein levels of the Gq/11 protein-coupled PLC-β1 isozyme and in PLC activity in the brain may be involved in the cellular adaptation to chronic ethanol exposure.  相似文献   

12.
Three types of epidermal cultures of fish were used for toxicological investigations, a primary cell culture and a tissue culture prepared from the rainbow trout Oncorhynchus mykiss Walbaum and the cell line EPC, derived from a skin tumour of the carp Cyprinus carpio L. Two studies were carried out to compare the different culture systems. In the first cultures were incubated with nonylphenol and in the second set of experiments the cell cultures were exposed to a wastewater sample containing low concentrations of nonylphenol (NP). Both cell cultures were similarly sensitive to nonylphenol with respect to the endpoints cell viability (LC50 (24 h) 47.1 μM NP (primary cell culture) and 44.2 μM NP (EPC)) values and apoptotic rate (significantly increased apoptotic rate after exposure to 50 μM NP for 24 h, p < 0.001 (primary cell culture), p = 0.008 (EPC)). The explant culture was slightly less sensitive (increased apoptotic rate after exposure to 50 μM NP for 24 h, but not significant: p = 0.385), which could be due to the capabilities of a differentiated tissue, providing more protective repair mechanisms, compared with single cells. All cultures revealed a concentration–response relationship for the endpoint apoptotic rate after the application of nonylphenol for 24 h. After wastewater exposure, a significant decrease in the apoptotic rate was measured in the primary cell culture (dilution wastewater : medium 1:1:p = 0.018; dilution wastewater : medium 1:2:p = 0.003), whereas the cell line EPC did not reveal any effects. Our results show that the endpoint apoptotic rate is more sensitive than the parameter cell viability for detecting adverse effects of a wastewater sample.  相似文献   

13.
Summary The feasibility of using plant cell culture to measure toxicity was determined by investigating the toxicological effects of three chemical compounds, allyl alcohol, propargylglycine, and cadmium chloride, on cell cultures ofCatharanthus roseus G. Don (Madagascar periwinkle). Suspension cultures ofC. roseus were maintained in modified B5 medium and transferred every 5 d. Five-day-old cell cultures were exposed to various concentrations (10,3,1,0.3,0.1,0.03,0.01,0.003,0.001,0.0003,0.0001, 0.00003, and 0.0 mM) of the toxicants in both acute and chronic toxicity tests. In the acute test, cells were exposed to the toxicant for 24 h, washed three times with sterile medium, and plated in petri plates with an equal volume of 1.4% agar medium. Cells in the chronic test were plated with an equal volume of 1.4% agar medium containing various concentrations of the toxicant. Cells were incubated 28 d at 30°C in the dark. The colonies were counted and the results plotted as percent survival versus toxicant concentration. The results indicate, at the concentrations tested, thatC. roseus assay may be feasible in that it fulfills the criteria for a practical assay (e.g., rapid, simple, quantifiable, and reproducible). This work was submitted to the faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Environmental Science, Institute of Environmental Sciences.  相似文献   

14.
Combined gasification and fermentation technologies can potentially produce biofuels from renewable biomass. Gasification generates synthesis gas consisting primarily of CO, CO2, H2, N2, with smaller amounts of CH4, NOx, O2, C2 compounds, ash and tars. Several anaerobic bacteria species can ferment bottled mixtures of pure synthesis gas constituents. However, there are challenges to maintaining culture viability of synthesis gas exposed cells. This study was designed to enhance culture stability and improve ethanol-to-acetate ratios using resting (non-growing) cells in synthesis gas fermentation. Resting cell states were induced in autotrophic Clostridium ljungdahlii cultures with minimal ethanol and acetate production due to low metabolic activity compared to growing cell production levels of 5.2 and 40.1 mM of ethanol and acetate. Clostridium autoethanogenum cultures were not induced into true resting states but did show improvement in total ethanol production (from 5.1 mM in growing cultures to 9.4 in one nitrogen-limited medium) as well as increased shifts in ethanol-to-acetate production ratios.  相似文献   

15.
Aims: To find out membrane tolerance strategy to ethanol in Bacillus subtilis that possesses a powerful system of protection against environmental stresses. Methods and Results: Cytoplasmic membranes of B. subtilis were severely affected by even short‐term exposure to 3% (v/v) ethanol: the growth rate and membrane protein synthesis were markedly reduced, and no adaptive alterations in phospholipids were detected. Simultaneously, steady‐state DPH fluorescence anisotropy (rss) showed that the membrane rigidity increased substantially. Analysis of the membrane phosphoproteome using in vitro labelling with [γ‐32P]ATP revealed the association of DnaK and GroEL chaperones with membrane, indicating a stress induction process. Upon a long‐term 3% (v/v) ethanol stress, the cell growth accelerated slightly and the composition of polar head groups and fatty acids of membrane phospholipids underwent an extensive reconstruction. Correspondingly, membrane fluidity turned back to the original rss values of the control cells. Conclusions: In B. subtilis, the adaptive response to short‐term ethanol stress comprises the recruitment of molecular chaperones on the impaired membrane structure; consequently, the phospholipid synthesis is restored and membrane fluidity adapts properly to the continuing ethanol stress. Significance and Impact of the Study: These findings underline the role of membrane lipids in establishing tolerance towards ethanol and also suggest the contribution of molecular chaperones to the membrane and cell recovery.  相似文献   

16.
A series of in vivo and in vitro experiments were conducted to determine the influence of prenatally administered ethanol on several aspects of the developing chick embryo spinal cord motor system. Specifically, we examined: (1) the effect of chronic ethanol administration during the natural cell death period on spinal cord motoneuron numbers; (2) the influence of ethanol on ongoing embryonic motility; (3) the effect of ethanol exposure on neurotrophic activity in motoneuron target tissue (limbbud); and (4) the responsiveness of cultured spinal cord neurons to ethanol, and the potential of target-derived neurotrophic factors to ameliorate ethanol neurotoxicity. These studies revealed the following: Chronic prenatal ethanol exposure reduces the number of motoneurons present in the lateral motor column after the cell death period [embryonic day 12 (E12)]. Ethanol tends to inhibit embryonic motility, particularly during the later stages viewed (E9-E11). Chronic ethanol exposure reduces the neurotrophic activity contained in target muscle tissue. Such diminished support could contribute to the observed motoneuron loss. Direct exposure of spinal cord neurons to ethanol decreases neuronal survival and process outgrowth in a dose-dependent manner, but the addition of target muscle extract to ethanol-containing cultures can ameliorate this ethanol neurotoxicity. These studies demonstrate ethanol toxicity in a population not previously viewed in this regard and suggest a mechanism that may be related to this cell loss (i.e., decreased neurotrophic support). © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Ethanol exposure during development leads to alterations in neuronal differentiation and profound neuronal loss in multiple regions of the developing brain. Although differentiating Purkinje cells of the cerebellum are particularly vulnerable to ethanol exposure, the mechanisms that ameliorate ethanol-induced Purkinje cell loss have not been well defined. Previous research indicates that glial-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β family, promotes the survival of several neuronal populations, including cerebellar Purkinje cells. Therefore, we examined whether GDNF could attenuate ethanol-induced Purkinje cell loss in an in vitro model system using calbindin-D28k-immunoreactivity as a specific marker for Purkinje cells. We found that ethanol led to a significant dose-related decline in calbindin-D28k-immunoreactive cells in explant cultures of the developing cerebellum. However, concurrent administration of GDNF led to a significant rescue of calbindin-D28k-immunoreactive cells. Therefore, our results suggest that GDNF prevents ethanol-associated Purkinje cell loss. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 835–847, 1997  相似文献   

18.
We have investigated hydrogen (H2) production by the cellulose-degrading anaerobic bacterium, Clostridium thermocellum. In the following experiments, batch-fermentations were carried out with cellobiose at three different substrate concentrations to observe the effects of carbon-limited or carbon-excess conditions on the carbon flow, H2-production, and synthesis of other fermentation end products, such as ethanol and organic acids. Rates of cell growth were unaffected by different substrate concentrations. H2, carbon dioxide (CO2), acetate, and ethanol were the main products of fermentation. Other significant end products detected were formate and lactate. In cultures where cell growth was severely limited due to low initial substrate concentrations, hydrogen yields of 1 mol H2/mol of glucose were obtained. In the cultures where growth ceased due to carbon depletion, lactate and formate represented a small fraction of the total end products produced, which consisted mainly of H2, CO2, acetate, and ethanol throughout growth. In cultures with high initial substrate concentrations, cellobiose consumption was incomplete and cell growth was limited by factors other than carbon availability. H2-production continued even in stationary phase and H2/CO2 ratios were consistently greater than 1 with a maximum of 1.2 at the stationary phase. A maximum specific H2 production rate of 14.6 mmol g dry cell−1 h−1 was observed. As cells entered stationary phase, extracellular pyruvate production was observed in high substrate concentration cultures and lactate became a major end product.  相似文献   

19.
Alcoholic beverages are consumed widely throughout the world. While the harmful effects of alcoholism are well recognized, the beneficial effects of moderate alcohol consumption to human health remain debatable. In this study, we investigated the effects of long-term ethanol exposure on nematode Caenorhabditis elegans worms. At high concentrations (?4%), ethanol significantly impaired mobility, reduced fertility, and shortened lifespan. Interestingly, at low concentrations (1–2%), it extended lifespan, accompanied with a slower decline of mobility during aging, although it slightly impaired development, fertility, and chemotaxis. The lifespan-prolonging effects of ethanol at the low concentrations were seen in normal worms exposed to ethanol from egg, young larva, and young adult stages but were not observed in age-1 and sir-2.1 mutant worms. Our study demonstrated hormetic effects of ethanol and further established C. elegans as a suitable animal model to study ethanol related problems.  相似文献   

20.
《Anaerobe》2000,6(4):233-240
The sensitivity of Clostridium perfringens strain 13 to oxygen and its toxic derivatives was investigated in a new, defined medium (MMP). Exponentially growing cells in MMP medium were very sensitive to exposure to air by vigorous shaking. When exposed to air, the cells survived only 1hour and then rapidly died. Addition of cysteine, ascorbic acid, or yeast extract to the medium significantly increased vegetative cell survival without inducing sporulation. The level of toxicity of peroxyl and hydroperoxyl radicals, generated by H2O2, t-butyl hydroperoxide or ethanol, was very similar with and without air exposure. By contrast, plumbagin or menadione, which generate superoxide radicals in the presence of oxygen, caused high levels of cell death only in aerobiosic culture. Growth-arrested cells were more resistant to H2O2and to redox-cycling agents than were exponentially growing cells, but the resistance required de novo synthesis of proteins. An adaptive response to oxidative stress was also suggested by the higher level of cell resistance to H2O2and to ethanol when cells were pretreated with sublethal doses of these oxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号