首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonspiking local interneurons in the terminal abdominal ganglion of the crayfish Procambarus clarkii receive inhibitory inputs from mainly glutamatergic spiking local interneurons and GABAergic nonspiking interneurons. In this study, the inhibitory responses of nonspiking interneurons to local application of glutamate and GABA into the neuropil were compared. Glutamate and GABA injection mediated the hyperpolarization of the nonspiking interneurons with an increase in membrane conductance. The glutamate-mediated membrane hyperpolarization was reversed by injection of 1 or 2 nA hyperpolarizing current. By contrast, more than 3 nA hyperpolarizing current was frequently necessary to reverse the GABA-mediated hyperpolarization. Bath application of a chloride channel blocker, 50 microM picrotoxin (PTX), reduced the glutamate-mediated hyperpolarization, but had no effect on the GABA-mediated hyperpolarization. The GABA-mediated hyperpolarization was not consistently affected by bath application of low chloride solution. These results suggest that the glutamate-mediated inhibition was related to the gating of a Cl(-) conductance, while the GABA-mediated inhibition was not. Electrical stimulation of sensory afferents innervating the exopodite elicited ipsps in uropod opener motor neurons. These sensory-evoked ipsps were also PTX-insensitive, suggesting GABAergic nonspiking interneurons could be the predominant premotor elements in organizing the uropod motor control system.  相似文献   

2.
3.
1.  Coordinated movements of the wings during flight in the locust result from coordinated activity of flight neurons in the thoracic ganglia. Many flight interneurons and motoneurons fire synchronous bursts of action potentials during the expression of the flight motor pattern. The mechanisms which underlie this synchronous firing were investigated in a deafferented preparation of Locusta migratoria.
2.  Simultaneous intracellular recordings were taken from flight neurons in the mesothoracic ganglion using glass microelectrodes filled with fluorescent dye.
3.  Three levels of synchronous activity between synergistic motoneurons and between the right and left partners of bilaterally symmetrical pairs of interneurons were observed: bursting which was loosely in phase but which showed little correlation between the temporal parameters of individual bursts in the two neurons; bursting which showed synchrony of the beginning and end of bursts; and bursts which showed highly synchronous spike-for-spike activity.
4.  Direct interactions between the neurons had little or no part to play in maintaining any of the levels of synchrony, even in instances of very close synchrony (spikes in different neurons occurring within 1 ms of each other). Highly synchronous firing was a consequence of common synaptic input impinging on neurons with similar morphological and physiological properties.
  相似文献   

4.
Fifteen local spiking interneurons (LSIs) and twentyone local non-spiking interneurons (LNIs) were identified in the terminal abdominal ganglion (TAG) of the cricket Gryllus bimaculatus on the basis of intracellular recording and staining (Figs. 1, 5, 6). Although the majority of LNIs showed sharp directionalities (Fig. 7) the LSIs did not (Fig. 3). The directionality of LNIs varied with the recording sites within a single cell (Fig. 8). Electrical stimulations of the cereal sensory nerve suggested that the LNIs are connected monosynaptically with the sensory afferents of both the cerci, and that LSIs may possess a variety of bilateral combinations of polysynaptic connections with the sensory afferents. We found that the spiking and the non-spiking local interneurons in the cereal sensory system differ not only in their membrane properties, but also in their afferent connections, and concluded that their differing connectivity to the sensory afferents will associate them with different roles in signal processing.Abbreviations TAG terminal abdominal ganglion - LSI local spiking interneuron - LNI local non-spiking interneurons - CNS central nervous system - PSP post synaptic potential - GI giant interneuron  相似文献   

5.
Summary Tactile stimulation of a leg of the locustSchistocerca gregaria can lead to specific reflex movements of that leg. At the same time nonspiking interneurones that are presynaptic to the participating motor neurones are excited or inhibited, suggesting that they are directly involved in these reflexes. The afferent pathways mediating these effects have been examined by recording from individual afferents and nonspiking interneurones.Afferent spikes fromtrichoid orcampaniform sensilla on specific regions of a leg evoke chemically-mediated EPSPs with a constant central latency of about 1.5 ms in certain nonspiking interneurones. The branches of an interneurone and the afferents from which it receives inputs overlap in the neuropil of the ganglion.No afferents have been found to evoke IPSPs directly in the nonspiking interneurones. Instead the inhibition is caused by a population of spiking local interneurones that are themselves excited directly by the afferents, and whose spikes evoke IPSPs in certain nonspiking interneurones.The tactile reflexes can involve movements about one or more joints of the leg, and these coordinated responses are explained by the participation of specific nonspiking interneurones that distribute the sensory inputs to the appropriate sets of motor neurones. For example, when hairs on the dorsal surface of a tarsus are touched, the tarsus is levated. This reflex involves nonspiking local interneurones which are excited directly by these hair afferents and which make direct excitatory connections with the single levator tarsi motor neurone.  相似文献   

6.
7.
Local nonspiking interneurons in the thoracic ganglia of insects are important premotor elements in posture control and locomotion. It was investigated whether these interneurons are involved in the central neuronal circuits generating the oscillatory motor output of the leg muscle system during rhythmic motor activity. Intracellular recordings from premotor nonspiking interneurons were made in the isolated and completely deafferented mesothoracic ganglion of the stick insect in preparations exhibiting rhythmic motor activity induced by the muscarinic agonist pilocarpine. All interneurons investigated provided synaptic drive to one or more motoneuron pools supplying the three proximal leg joints, that is, the thoraco-coxal joint, the coxa-trochanteral joint and the femur-tibia joint. During rhythmicity in 83% (n=67) of the recorded interneurons, three different kinds of synaptic oscillations in membrane potential were observed: (1) Oscillations were closely correlated with the activity of motoneuron pools affected; (2) membrane potential oscillations reflected only certain aspects of motoneuronal rhythmicity; and (3) membrane potential oscillations were correlated mainly with the occurrence of spontaneous recurrent patterns (SRP) of activity in the motoneuron pools. In individual interneurons membrane potential oscillations were associated with phase-dependent changes in the neuron's membrane conductance. Artificial changes in the interneurons' membrane potential strongly influenced motor activity. Injecting current pulses into individual interneurons caused a reset of rhythmicity in motoneurons. Furthermore, current injection into interneurons influenced shape and probability of occurrence for SRPs. Among others, identified nonspiking interneurons that are involved in posture control of leg joints were found to exhibit the above properties. From these results, the following conclusions on the role of nonspiking interneurons in the generation of rhythmic motor activity, and thus potentially also during locomotion, emerge: (1) During rhythmic motor activity most nonspiking interneurons receive strong synaptic drive from central rhythm-generating networks; and (2) individual nonspiking interneurons some of which underlie sensory-motor pathways in posture control, are elements of central neuronal networks that generate alternating activity in antagonistic leg motoneuron pools. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Nonspiking local interneurones are the important premotor elements in arthropod motor control systems. We have analyzed the synaptic interactions between nonspiking interneurones in the crayfish terminal (6th) abdominal ganglion using simultaneous intracellular recordings. Only 15% of nonspiking interneurones formed bi-directional excitatory connections. In 77% of connections, however, the nonspiking interneurones showed a one-way inhibitory interaction. In these cases, the presynaptic nonspiking interneurones received excitatory synaptic inputs from the sensory afferents innervating hairs on the surface of the uropods and the postsynaptic nonspiking interneurones received inhibitory synaptic inputs that were partly mediated by the inputs to the presynaptic nonspiking interneurones. The membrane hyperpolarization of the postsynaptic nonspiking interneurones mediated by the presynaptic nonspiking interneurones was reduced in amplitude when the hyperpolarizing current was injected into the postsynaptic interneurones, or when the external bathing solution was replaced with one containing low calcium and high magnesium concentrations. The role of these interactions in the circuits controlling the movements of the terminal appendages is discussed.Abbreviations AL antero-lateral - epsp excitatory postsynaptic potential - ipsp inhibitory postsynaptic potential - PL postero-lateral  相似文献   

9.
Auditory interneurone responses in the mesothoracic ganglion of the cricket Gryllus bimaculatus were investigated with special regard to temporal features of the calling song. Units representing five response types were found. One type codes verse syllables and intensity. The second codes syllables of highfrequency verses. The third responds as a pulse marker. The fourth shows adaptation and the response pattern depends on the verse frequency. The fifth fires a burst at verse onset.Responses of mesothoracic units recorded in two other cricket species do not differ markedly from those of Gryllus bimaculatus. Particularly, no tuning is found to species-specific differences in their calling songs.The stimulus direction can affect the threshold in different ways: dependence at all frequencies, dependence only between 3 and 6 kHz, and independence are found. The dependence is mainly expressed by a higher threshold for contralateral sounds.The mesothoracic branching of a few neurones was demonstrated by extracellular CoS-staining. These cells pass through the ganglion as connective fibres giving off small branches into the ventro-medial and dorso-medial neuropiles.  相似文献   

10.
Nonspiking interneurons were investigated in a tethered, walking insect, Carausius morosus, that was able to freely perform walking movements. Experiments were carried out with animals walking on a lightweight, double-wheel treadmill. Although the animal was opened dorsally, the walking system was left intact. Intracellular recordings were obtained from the dorsal posterior neuropil of the mesothoracic ganglion. Nonspiking inter-neurons, in which modulations of the membrane potential were correlated with the walking rhythm, were described physiologically and stained with Lucifer Yellow. Interneurons are demonstrated in which membrane potential oscillations mirror the leg position or show correlation with the motoneuronal activity of the protractor and retractor coxae muscles during walking. Other interneurons showed distinct hyperpolarizations at certain important trigger points in the step cycle, for example, at the extreme posterior position. Through electrical stimulation of single, nonspiking interneurons during walking, the motoneuronal activity in two antagonistic muscles—protractor and retractor coxae—could be reversed and even the movement of the ipsilateral leg could be influenced. The nonspiking interneurons described appear to be important premotor elements involved in walking. They receive, integrate, and process information from different leg proprioceptors and drive groups of leg motoneurons during walking.  相似文献   

11.
Nonspiking interneurons were investigated in a tethered, walking insect, Carausius morosus, that was able to freely perform walking movements. Experiments were carried out with animals walking on a lightweight, double-wheel treadmill. Although the animal was opened dorsally, the walking system was left intact. Intracellular recordings were obtained from the dorsal posterior neuropil of the mesothoracic ganglion. Nonspiking interneurons, in which modulations of the membrane potential were correlated with the walking rhythm, were described physiologically and stained with Lucifer Yellow. Interneurons are demonstrated in which membrane potential oscillations mirror the leg position or show correlation with the motoneuronal activity of the protractor and retractor coxae muscles during walking. Other interneurons showed distinct hyperpolarizations at certain important trigger points in the step cycle, for example, at the extreme posterior position. Through electrical stimulation of single, nonspiking interneurons during walking, the motoneuronal activity in two antagonistic muscles--protractor and retractor coxae--could be reversed and even the movement of the ipsilateral leg could be influenced. The nonspiking interneurons described appear to be important premotor elements involved in walking. They receive, integrate, and process information from different leg proprioceptors and drive groups of leg motoneurons during walking.  相似文献   

12.
13.
In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.Abbreviations CLP reflex, compensatory leg placement reflex - CI1 common inhibitor I motoneuron - fCO femoral chordotonal organ - FETi fast extensor tibiae motoneuron - FT femur-tibia - SETi slow extensor tibiae motoneuron  相似文献   

14.
15.
Glutamate decarboxylase immunoreactivity has been located in the thoracic ganglia of the locust, Locusta migratoria, using an antiserum raised from rat brain. At the light microscopic level clusters of nerve cell somata as well as nerve fibres were positively labelled by the antiserum. Electron microscopy showed that glutamic acid decarboxylase was localized in numerous synaptic terminals.  相似文献   

16.
The closer muscle of the mesothoracic spiracle of the locust, Schistocerca gregaria is innervated by two excitatory motoneurones and also by processes of a peripherally located neurosecretory cell. Within the muscle, ultrastructural studies show the presence of two types of excitatory nerve terminal which differ in the content of dense cored vesicles and in their distribution. The ventral segment of the muscle is innervated predominantly by terminals with small clear vesicles and only an occasional dense-cored vesicle. The central part of the muscle is innervated predominantly by terminals with small clear vesicles and larger numbers of dense-cored vesicles. The dorsal segment of the muscle is innervated exclusively by a neurosecretory type innervation. The small neurohaemal organ of the median nerve close to the spiracle muscle is immunoreactive to an antibody raised against bovine pancreatic polypeptide but no immunoreactive processes enter the muscle itself. The muscle possesses specific octopaminergic receptors that increase cyclic AMP levels and the possibility that the neurosecretory input to the muscle is provided by either a central or peripheral octopamine containing neurone is discussed.  相似文献   

17.
Three pairs of nonspiking giant interneurons (NGIs; G1, G2, and G3) of the crayfish brain responded with depolarizing and hyperpolarizing graded potentials to body tilt in roll to the ipsi- and contralateral sides in the dark. The higher and the larger the angle of body tilt, the larger was the amplitude of the geotactic responses. In ipsilaterally statocystectomized animals, all the NGIs responded with hyperpolarizing potentials only to the contralateral side-down tilt, whereas in contralaterally statocystectomized animals, they responded with depolarizing potentials only to the ipsilateral side-down tilt. In bilaterally statocystectomized animals, none of the NGIs responded to body tilt in the dark, but in the presence of an overhead light, they exhibited depolarizing and hyperpolarizing potentials in response to body tilt to the ipsi-and contralateral sides, respectively. All the NGIs responded with depolarizing and hyperpolarizing graded potentials to illumination of the contra- and ipsilateral eyes, respectively. The amplitude of these visual responses, however, varied in association with the amplitude of the geotactic response produced by body tilt. These results indicate that the NGIs integrate the sensory inputs from eyes and statocysts and that the interaction between sensory inputs from the left and right sensory organs with either the same modality or with different modalities enhance the directional sensitivity of NGIs as premotoneurons in the compensatory oculomotor system.  相似文献   

18.
19.
Three descending brain interneurons (DNI, DNM, DNC) are described from Locusta migratoria. All are paired, dorsally situated neurons, with soma in the protocerebrum, input dendrites in the proto- and deuterocerebrum, and a single axon running to the metathoracic ganglion and sometimes further. In DNI the soma and all cerebral arborizations lie ipsilateral to the axon. Discrete regions of arborization lie in the ipsilateral and medial ocellar tracts, the midprotocerebrum and the deuterocerebrum. In the other ganglia the axon branches only ipsilaterally, principally laterally in the flight motor neuropil but also towards the midline. DNC is similarly organized to DNI, but the cell crosses the midline in the brain. Soma, the single projection into a lateral ocellar tract, and the midprotocerebral arborization all lie contralateral to the axon. The deuterocerebral arborization is, however, ipsilateral to the axon. The pattern of projections in the remaining ganglia resembles that of DNI. The soma and all cerebral arborizations of DNM lie ipsilateral to the axon. The arborization is only weakly subdivided into protocerebral, deuterocerebral and medial ocellar tract regions. In the remaining ganglia the arborization extends bilaterally to similar areas of both left and right flight motor neuropil. A table of synonymy is given, equating the various names used for these neurons by previous authors. The morphology correlates well with the known input and output connections. They respond physiologically to deviations from the normal flight posture mediated by ocelli, eyes and wind hairs and connect to the thoracic flight apparatus.  相似文献   

20.
The DNI, DNM and DNC descending interneurons all have very similar properties and are each at the convergence of visual, ocellar, wind-hair and other mechanoreceptor inputs. The 3 neurons respond almost exclusively to movement of the animal in space about its three axes of rotation. All are spatially and directionally selective. Movements in the preferred sense produce increasingly strong responses with amplitude and absolute position, while movements in the antipreferred sense usually elicit no response at all. Movements in the preferred sense, but towards, rather than away from, the normal flying position start to produce responses only as the animal approaches the normal flight position. The neurons function as feature detectors, responding only to specific sorts of deviation from course. DNI, DNM and DNC differ from one another principally in their directionality. DNI responds optimally to a diving banked turn to the ipsilateral side, DNM to downwards pitch, and the DNC to a diving banked turn to the contralateral side. The DN neurons contribute to the production of steering manoeuvres. They appear to be representatives of a larger class of descending interneurons bringing exteroceptive sensory input to the thoracic locomotory neuropil. The occurrence of this class of units in locusts and other insects is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号