首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
This study examines the influence of follicular maturation as well as the role of various hormones upon the secretion of an oocyte maturation inhibitor (OMI) from porcine granulosa cells incubated in vitro. The results demonstrate that the OMI substance, secreted into the media by granulosa cells, is present in a low molecular-weight fraction (< 10,000 daltons) similar to that found in follicular fluid of porcine antral follicles. Also, as follicular development progresses, the granulosa cells lose their ability to secrete OMI. More importantly, hormones appear to regulate OMI secretion: FSH stimulates OMI secretion and androgens inhibit OMI secretion. These data provide evidence for the proposal of the following hypothesis concerning hormonal regulation of oocyte, meiosis by OMI in the porcine follicle: Whether the oocyte resumes meiosis, either during atresia or ovulation, is dependent upon the proper milieu of gonadotropins, cyclic-AMP, and steroids within the microenvironment of the follicular compartment. The cellular interactions of these hormones, particularly FSH and androgens, control the amount of OMI (and possibly other intrafollicular factors) secreted in the follicle, which may be involved in either maintaining the immature state or permitting meiotic maturation.  相似文献   

2.
The ability of isolated porcine oocyte-cumulus complexes to secrete progesterone and convert androgens to estrogen during two days of culture was examined. We studied the effects of steroids, as well as a partially purified fraction of follicular fluid oocyte maturation inhibitor (Sephadex Peak A OMI), on the ability of oocyte-cumulus complexes to mature and convert androgen to estrogen. The addition of 0.014, 0.14 or 1.4 μg/ml androstenedione to the culture medium resulted in a substrate dose-dependent accumulation of estrogen in the culture medium after two days. Oocyte-cumulus cell complexes secreted more estrogen in the presence of androstenedione than in the presence of testosterone (P < 0.05). The addition of 1.4 μg/ml testosterone, androstenedione, or estradiol, but not dihydrotestosterone, inhibited cumulus cell progesterone secretion (P < 0.001 versus untreated control culture). Oocyte maturation was not altered by the addition of steroids in doses up to and including 1.4 μg/ml. The Sephadex Peak A OMI fraction of pFFL inhibited oocyte maturation 51% (P < 0.01) and progesterone secretion 91% (P < 0.01) but had no effect on the conversion of androgens to estrogens. Cumulus cell monolayer formation was inhibited 71.5% (P < 0.01) by the Sephadex Peak A OMI fraction and 35.4% (P < 0.05) by the Sephadex Peak A OMI fraction plus androstenedione. These studies indicate that porcine oocyte-cumulus complexes can convert androgens to estrogens and that partially purified OMI does not inhibit conversion of androgens to estrogen.  相似文献   

3.
The objective of this study was to find out whether porcine cumulus and mural granulosa cells can secrete cumulus expansion-enabling factor (CEEF). Culture drops of M-199 medium were conditioned with denuded porcine oocytes (1 oocyte/μl), cumulus cells from oocytectomized complexes (1 OOX/μl), pieces of mural granulosa isolated from preantral to preovulatory follicles (1000 cells/μl), or oviductal cells (1000 cells/μl) for 24 hr. The production of CEEF was assessed by the addition of mouse OOX and follicle-stimulating hormone (FSH) (1 μg/ml) to microdrops of the conditioned medium. After 16–18 hr, expansion of the mouse OOX was scored on a scale of 0 to 4 by morphologic criteria. Mouse OOX did not expand in nonconditioned FSH-supplemented medium. Immature porcine oocytes produced +3 to +4 expansion of the mouse OOX. Granulosa cells isolated from preantral and early antral follicles and cumulus cells isolated from all stages of follicle development constitutively secreted CEEF under in vitro conditions. Mural granulosa cells of small, medium, and preovulatory (PMSG) follicles also secreted CEEF in vitro; however, FSH or leutenizing hormone (LH) stimulation was essential for this secretion. Hormonally induced secretion of CEEF was accompanied by expansion of the mural granulosa itself. Granulosa cells isolated from follicles of gilts 20 hr after PMSG and human chorionic gonadotropin (hCG) administration did not produce CEEF and did not expand in response to FSH and LH in vitro. CEEF activity also was found in the follicular fluid of small antral follicles, was reduced in medium follicles, and was not detectable in PMSG-stimulated follicles. However, CEEF activity was reestablished in the follicular fluid of preovulatory follicles by hCG injection, conceivably due to increased production of CEEF by cumulus cells. We conclude that (1) porcine cumulus and mural granulosa cells are capable of CEEF production in vitro and (2) autocrine secretion of CEEF by cumulus cells is involved in regulation of porcine cumulus expansion both in vitro and in vivo. Mol. Reprod. Dev. 49:141–149, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Previous work suggests that a number of factors such as follicle size, day of estrous cycle, and level of atresia influence the developmental potential of bovine oocytes in vitro. To understand better the interactions of these factors, 1299 follicles ≥3 mm in diameter were dissected from ovaries of synchronized dairy cows on four days (d2, d7, d10, or d15) during the estrous cycle. The oocyte from each follicle was collected and matured, fertilized, and cultured singly to d8 (d0 of culture = IVF). Control follicles (302) were similarly dissected and processed from an ovary pair randomly collected from the abattoir on each slaughter day. Results showed that development to blastocyst was greater in oocytes collected during phases of follicular growth (d2 and d10) than those collected during phases of follicular dominance (d7 and d15; 44.8% vs. 36.0%, respectively: P < 0.001) over all follicle size categories (3–5 mm, 6–8 mm, 9–12 mm and ≥13 mm). Oocyte competence tended to increase with increasing follicle size (P < 0.1). Follicular cells from follicles containing an oocyte that developed to morula or greater by d8 (484 samples) were analyzed by flow cytometry to measure the level of apoptosis. Results showed an increase in mean percent apoptotic cells in subordinate follicles (18.65 ± 0.86 over all size categories), particularly those of medium size (25.55 ± 2.2 for 6–8 mm size follicles; P < 0.001), during the dominance phase compared to growth phase (9.25 ± 0.95 over all sizes; P < 0.05). These results show a significant affect of the stage of estrous cycle on both oocyte competence and levels of follicular atresia. Mol. Reprod. Dev. 53:451–458, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
《Theriogenology》2012,77(9):1647-1657
The objective of this study was to characterize the morphometry and ultrastructure of porcine preantral and antral follicles, especially the lipid component evolution. Ovarian tissue was processed for light microscopy. Ovarian tissue and dissected antral follicles (< 2, 2–4, and 4–6 mm) were also processed for transmission electron microscopy using routine methods and using an osmium-imidazole method for lipid detection. Primordial follicles (34 ± 5 μm in diameter, mean ± SD) had one layer of flattened-cuboidal granulosa cells around the oocyte, primary follicles (40 ± 7 μm) had a single layer of cuboidal granulosa cells around the oocyte, and secondary follicles (102 ± 58 μm) had two or more layers of cuboidal granulosa cells around the oocyte. Preantral follicle oocytes had many round mitochondria and both rough and smooth endoplasmic reticulum. In oocytes of primordial and primary follicles, lipid droplets were abundant and were mostly located at the cell poles. In secondary and antral follicles, the zona pellucida completely surrounded the oocyte, whereas some microvilli and granulosa cells projected through it. Numerous electron-lucent vesicles and vacuoles were present in the oolemma of secondary and antral follicles. Based on osmium-imidazole staining, most of these structures were shown to be lipid droplets. As the follicle developed, the appearance of the lipid droplets changed from small and black to large and gray, dark or dark with light streaks, suggesting that their nature may change over time. In summary, although porcine follicles and oocytes had many similarities to those of other mammalian species, they were rich in lipids, with lipid droplets with varying morphological patterns as the follicle developed.  相似文献   

6.
The objective of this article was to study the developmental and hormonal regulation of cumulus expansion and secretion of cumulus expansion-enabling factor (CEEF) in goat follicles. M-199 medium was conditioned for 24 hr with cumulus-denuded oocytes (DOs), oocytectomized complexes (OOXs), or mural granulosa cells (MGCs) from goat follicles of different sizes. Mouse OOXs and eCG were added to culture drops of the conditioned medium and cumulus expansion was scored at 18 hr of culture to assess CEEF production. While mouse OOXs did not expand, goat OOXs underwent full cumulus expansion when cultured in nonconditioned eCG-supplemented M-199 medium. When cultured in nonconditioned medium containing 10% follicular fluid (FF) from goat medium (2-4 mm) and small (0.8-1.5 mm) follicles, 71-83% mouse OOXs expanded; but expansion rates decreased (P < 0.05) at either lower or higher FF concentrations. FF from large (5-6 mm) follicles did not support mouse OOX expansion at any concentrations. While medium conditioned with DOs from follicles of all the three sizes supported expansion of 80-90% mouse OOXs, medium conditioned with mature DOs had no effect. While cumulus cells from follicles of all the three sizes secreted CEEF in the absence of gonadotropins, MGCs from large follicles became gonadotropin dependent for CEEF production. Both FSH and LH stimulated CEEF production by large follicle MGCs, but FSH had a shorter half-life than LH to expand mouse OOXs. Few meiosis-incompetent goat oocytes from small follicles underwent cumulus expansion when cultured in medium conditioned with goat DOs or cocultured with goat COCs from medium follicles. It is concluded that (1) goat cumulus expansion is independent of the oocyte; (2) the limited CEEF activity in FF from large follicles was due mainly to the inability of MGCs in these follicles to secret the factor in absence or short supply of gonadotropins; (3) the cumulus expansion inability of the meiosis incompetent goat oocytes was due to the inability of their cumulus cells to respond to rather than to produce CEEF.  相似文献   

7.
Two experiments were carried out to test the hypothesis that follicles recovered from Meishan animals may provide a more favourable environment for oocyte maturation in vitro than follicles recovered from Large-White hybrid animals. In Experiment 1, all follicles ≥4 mm were recovered from six Meishan and seven Large-White hybrid gilts in the late follicular phase and healthy oocyte cumulus complexes recovered. Cumulus oocyte complexes were randomly divided into two groups, and each group cultured for 27 or 34 h (62 and 64; 56 and 56 for Meishan and Large-White hybrid, respectively) in defined medium in the presence of either of the two largest follicle shells per animal. Subsequent examination of oocyte nuclear maturation showed that although maturation did not differ significantly between the breeds after 27 h, more (P<0.01) Meishan oocytes co-cultured with Meishan follicles developed to metaphase II stage than Large-White hybrid oocytes co-cultured with Large-White hybrid follicles after 34 h. The next eight largest follicles per animal were cultured for 34 h to produce conditioned media. In Experiment 2, oocytes recovered from the slaughterhouse were matured for 46 h in the presence of conditioned media from Meishan (612 oocytes) or Large-White hybrid (731 oocytes) follicles, or in fresh medium in the presence of a follicle shell from slaughterhouse ovaries. Oocytes were then inseminated and 12 h later examined for penetration and male pronuclear formation. A higher (P<0.05) percentage of oocytes cultured in Meishan follicle conditioned medium underwent sperm penetration and male pronuclear formation than oocytes cultured in conditioned media from Large-White hybrid animals. Concentrations of oestradiol and progesterone in the conditioned media did not differ between the breeds (P>0.1). In conclusion, these results suggest that (1) Meishan oocytes have advanced maturational capacity when cultured with Meishan preovulatory follicle shells and (2) differences in follicle maturation in the Meishan compared to the Large-White hybrid pig may result in an improved ability of the follicles, via conditioned media, to support oocyte maturation and fertilization in vitro.  相似文献   

8.
9.
Silva RC  Báo SN  Jivago JL  Lucci CM 《Theriogenology》2011,76(9):1647-1657
The objective of this study was to characterize the morphometry and ultrastructure of porcine preantral and antral follicles, especially the lipid component evolution. Ovarian tissue was processed for light microscopy. Ovarian tissue and dissected antral follicles (< 2, 2-4, and 4-6 mm) were also processed for transmission electron microscopy using routine methods and using an osmium-imidazole method for lipid detection. Primordial follicles (34 ± 5 μm in diameter, mean ± SD) had one layer of flattened-cuboidal granulosa cells around the oocyte, primary follicles (40 ± 7 μm) had a single layer of cuboidal granulosa cells around the oocyte, and secondary follicles (102 ± 58 μm) had two or more layers of cuboidal granulosa cells around the oocyte. Preantral follicle oocytes had many round mitochondria and both rough and smooth endoplasmic reticulum. In oocytes of primordial and primary follicles, lipid droplets were abundant and were mostly located at the cell poles. In secondary and antral follicles, the zona pellucida completely surrounded the oocyte, whereas some microvilli and granulosa cells projected through it. Numerous electron-lucent vesicles and vacuoles were present in the oolemma of secondary and antral follicles. Based on osmium-imidazole staining, most of these structures were shown to be lipid droplets. As the follicle developed, the appearance of the lipid droplets changed from small and black to large and gray, dark or dark with light streaks, suggesting that their nature may change over time. In summary, although porcine follicles and oocytes had many similarities to those of other mammalian species, they were rich in lipids, with lipid droplets with varying morphological patterns as the follicle developed.  相似文献   

10.
Summry— Hybridoma cell lines were obtained from mouse splenocytes sensitized to granulosa cells collected from rat ovaries after gonadotropin stimulation. A monoclonal antibody (5G5) was obtained which reacted with granulosa cells and showed a positive reaction with serum-free conditioned medium containing granulosa cell secreted proteins. Immoblotting of the conditioned medium and light- and electron-microscopic immunocytochemistry of rat ovary show that mAb 5G5 is directed against a 59-kDa protein which is located on the plasma membrane of granulosa cells. Furthermore, the immunoreactivity of the granulosa cells depends both on the degree of follicle development and on the position of the granulosa cells within the follicles. Strong immunoreactivity was observed in the innermost granulosa cell layers, close to the oocyte and the antral cavity. The results obtained show that mAb 5G5 is a useful marker of a 59-kDa granulosa cell protein which might be of importance for the follicle and the occyte maturation.  相似文献   

11.
Oocyte maturation inhibitor (OMI), inhibin, progesterone and oestradiol 17 beta concentrations were measured in fluid collected from small (less than 3 mm), medium size (3-6 mm) and large (greater than 6 mm) porcine ovarian follicles, which were obtained on Days 5, 10, 15 and 18 of the oestrous cycle and at 24 h after the onset of oestrus. Concentrations of OMI decreased with increasing follicle diameter (P less than 0.05), independent of the stage of the oestrous cycle. Concentrations of inhibin showed a tendency to decrease with increasing follicle diameter on Days 10, 15 and 18, but not on Day 5 of the cycle. Concentrations of OMI and inhibin in the largest follicles were low before the onset of oestrus, and were essentially unaltered 24 h later. A positive correlation was found between OMI and inhibin concentrations, whereas the correlation between inhibin concentration and log (progesterone concentrations) was negative.  相似文献   

12.
Oocyte-cumulus complexes and granulosa cells were harvested from small (1–2 mm), medium (3–5 mm), and large (6–12 mm) porcine antral follicles and cultured for 2 and 3 days. The effects of various doses of purified hCG and human FSH on progesterone secretion and monolayer formation were examined. After a 2-day culture period it was found that FSH was more effective in stimulation of progesterone secretion by cultured oocyte-cumulus complexes than in granulosa cells harvested from small follicles (P < 0.01), whereas hCG was more effective in stimulating progesterone secretion in granulosa cells than in oocytecumulus complexes harvested from large follicles. In contrast, after a 3-day culture period, granulosa cells secreted more progesterone compared to oocytecumulus complexes under control conditions or in the presence of hCG or FSH. After 3 days both FSH and hCG stimulated progesterone secretion by oocytecumulus complexes and granulosa cells; however, the hormone effect was greater upon granulosa cells than oocyte-cumulus complexes. After 3 days of culture in the case of both follicular cell types, there was a greater response to FSH in the case of cells harvested from small compared to large follicles. The reverse was true in the case of hCG responsiveness. Monolayer formation ability of oocyte-cumulus complexes was greater in the case of complexes harvested from small and medium than complexes harvested from large follicles. Addition of hCG to the cultures led to a dose-dependent decrease in monolayer formation by oocyte-cumulus complexes harvested from all sizes of follicles.  相似文献   

13.
The aim of the study was to determine the contribution of cumulus cells on the developmental competence of porcine oocytes during follicle growth. Oocytes from large (5-8mm) and small (2-3mm) follicles were cultured with or without follicle stimulating hormone (FSH), subsequently examined for nuclear stage and spindle morphology, or fertilized and cultured for embryo development, or analyzed for glutathione content. Additionally, the significance of cumulus investment, corona radiata cells, cumulus cell number and origin of cumulus cells for oocyte maturation were investigated. Small follicle oocytes cultured without FSH exhibited the highest incidence of spindle aberrations. Oocytes cultured without FSH exhibited reduced sperm penetration and blastocyst rates, and a higher proportion monospermic oocytes developed to the blastocyst stage when derived from large follicles. The glutathione content in oocytes increased during follicle growth and oocyte maturation, but no direct correlation between oocyte glutathione content and oocyte developmental capacity was observed. Oocytes with a bigger cumulus investment exhibited better embryo development. Oocytes with a single corona radiata cell layer (CROs) exhibited similar progression through meiosis to oocytes with more cumulus cell layers, but showed reduced embryo development. More blastocysts were observed when CROs were cultured with disconnected cumulus cells during IVM, but no blastocyst increase was observed when CROs were cocultured with a higher number of cumulus cells or with cumulus cells from large follicles. We conclude that increased developmental capacity of oocytes during follicle growth is intrinsic and whether cumulus cells originate from large or small follicles, their contribution to oocyte maturation remains unchanged. Further, cumulus investment can be used as a variable to predict oocyte developmental capacity.  相似文献   

14.
Oocyte control of granulosa and theca cell function may be mediated by several growth factors via a local feedback loop(s) between these cell types. This study examined both the role of oocyte-secreted factors on granulosa and thecal cells, cultured independently and in co-culture, and the effect of stem cell factor (SCF); a granulosa cell derived peptide that appears to have multiple roles in follicle development. Granulosa and theca cells were isolated from 2–6 mm healthy follicles of mature porcine ovaries and cultured under serum-free conditions, supplemented with: 100 ng/ml LR3 IGF-1, 10 ng/ml insulin, 100 ng/ml testosterone, 0–10 ng/ml SCF, 1 ng/ml FSH (granulosa), 0.01 ng/ml LH (theca) or 1 ng/ml FSH and 0.01 ng/ml LH (co-culture) and with/without oocyte conditioned medium (OCM) or 5 oocytes. Cells were cultured in 96 well plates for 144 h, after which viable cell numbers were determined. Medium was replaced every 48 h and spent medium analysed for steroids.  相似文献   

15.
The purpose of this study was to establish a culture model for isolated intact porcine antral follicles and investigate the relationship between granulosa cell apoptosis and follicular atresia. Small (<3 mm), medium (3–5 mm) and large (>5 mm) healthy porcine follicles were isolated and cultured in serum‐free TCM199 with or without follicular stimulating hormone (FSH). Microscopic identification of healthy follicles was confirmed by histology. A spontaneous onset of apoptotic cell death in granulosa cells was observed from cultured antral follicles. The apoptotic rate of granulosa cells from small follicles cultured for 24 hr was higher than those of large and medium follicles, accompanied with high FasL mRNA abundance in granulosa cells. Supplementation with 3 or 5 IU/ml FSH significantly inhibited the percentage of granulosa cells that became apoptotic. FSH did not significantly alter estradiol secretion from cultured follicles. Progesterone secretion significantly decreased after culture for 48 hr, coinciding with the morphological changes observed. FasL and Fas mRNA were expressed in the healthy, early atretic, and progressed atretic porcine follicles regardless of follicular size. However, FasL but not Fas mRNA levels increased during follicular atresia. Addition of FSH significantly decreased FasL rather than Fas mRNA levels in granulosa cells and could attenuate apoptosis. Small follicles seemed to be more susceptible to atresia as compared to medium and large follicles. Mol. Reprod. Dev. 77: 670–678, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
An option for fertility preservation for women facing a cancer diagnosis involves the cryopreservation of ovarian tissue for later re‐transplantation or in vitro culture, with in vitro culture preferred to avoid reintroduction of the cancer. Small, immature follicles survive the freeze‐thaw process, and can be matured through in follicle maturation (IFM) that involves an initial growth of the follicle and subsequent maturation of the oocyte. The ovarian tissue can be cryopreserved in two forms: (i) cortical strips consisting of follicles and surrounding stroma (Cryo‐Ov) or (ii) individually isolated follicles (Cryo‐In). The aim of this study was to assess the follicle growth and oocyte maturation for follicles that were cryopreserved either as strips or individually using a slow‐freezing cryopreservation method. The two follicle groups, together with non‐cryopreserved control follicles, were grown in an alginate‐based three‐dimensional culture system for 12 days. The overall survival, size increase and antrum formation rates were comparable among the three groups. At day 12 of culture, Androstenedione levels were decreased in the Cryo‐Ov group relative to the other two, and the ratio of progesterone to estradiol was increased in the two cryopreserved groups relative to the control. Both Gja1 (known as connexin 43) and Gja4 (known as connexin 37) mRNA expression were decreased at day 6 in the cryopreserved groups relative to controls, and by day 12, Gja1 was similar for all three groups. Moreover, Cryo‐In resulted in lower GVBD rate indicating some impaired oocyte development. Overall, the present study demonstrated that mouse preantral follicles, either within ovarian tissues or individually isolated, could be successfully cryopreserved by the slow‐freezing method, as evidenced by post‐thaw follicle development and steroidgenesis, oocyte maturation and molecular markers for oocyte and/or granulosa cells connection. Biotechnol. Bioeng. 2009;103: 378–386. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
The aim of this study was to test the following hypotheses: (i) that oocyte maturation is controlled by surrounding follicular cells; (ii) that a meiosis-regulating factor of follicular origin is not species-specific; (iii) that one of the follicular regulators of oocyte maturation is IGF-I; and, (iv) that Cumulus oophorus and tyrosine kinase-dependent intracellular mechanisms do not mediate IGF-I action on oocytes. It was found that co-culture of cumulus-enclosed bovine oocytes with isolated bovine ovarian follicles or with isolated porcine ovarian follicles significantly increased the proportion of matured oocytes (at metaphase II of meiosis) after culture. Porcine oocytes without cumulus investments had lower maturation rates than cumulus-enclosed oocytes. Co-culture with isolated porcine ovarian follicles resulted in stimulation of maturation of both cumulus-free and cumulus-enclosed porcine oocytes. These observations suggest that follicular cells (whole follicles or Cumulus oophorus) support bovine and porcine oocyte maturation, and that follicular maturation-promoting factor is not species-specific. The release of significant amounts of IGF-I by cultured bovine and porcine isolated follicles and granulosa cells was demonstrated. Addition of IGF-I to culture medium at 10 or 100 (but not 1000) ng/ml stimulated meiotic maturation of both cumulus-enclosed and cumulus-free porcine oocytes. Neither of the tyrosine kinase blockers, genistein or lavendustin (100 ng/ml medium), changed the stimulating effect of IGF-I on porcine oocytes. The present data suggest that at least one of the follicular stimulators of oocyte nuclear maturation is IGF-I, and that its effect is probably not mediated by cumulus investment or by tyrosine kinase-dependent intracellular mechanisms.  相似文献   

19.
20.
Nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles were examined. Oocyte-cumulus complexes were collected from small (1-2 mm in diameter), medium (3-6 in diameter) and large (7-8 mm in diameter) follicles and cultured in a modified tissue culture medium 199 for 44 h. Nuclear maturation was evaluated after orcein staining, and cytoplasmic maturation was evaluated by intracellular glutathione (GSH) assay. Oocyte diameter, cumulus morphology, steroid hormones and glutathione in the follicular fluid (FF), were also examined. Significantly higher proportions of oocytes collected from large and medium follicles reached metaphase II than did oocytes from small follicles. Oocytes from small follicles also had a smaller size. GSH content was significantly higher (p < 0.05) in oocytes from large (14.24 +/- 2.1 pmol/oocyte) and medium (13.69 +/- 1.5 pmol/oocyte) follicles than in oocytes from small (9.44 +/- 1.28 pmol/oocyte) follicles just after collection. After maturation, oocytes from medium follicles had a higher GSH concentration than oocytes from small follicles. It was found that between 49.7 +/- 5.18 nM and 52.25 +/- 0.78 nM GSH was present in FF but there was no statistical difference between follicle sizes. A significantly higher (p < 0.001) estradiol level was present in FF from large follicles (299.2 +/- 68.6 ng/ml) than from medium (40.0 +/- 6.4 ng/ml) and small (41.2 +/- 3.7 ng/ml) follicles. Progesterone concentrations in FF from large (281.6 +/- 45.9 ng/ml) and medium (267.5 +/- 38.6 ng/ml) follicles were significantly higher than that (174.7 +/- 22.0 ng/ml) from small follicles. These results indicate that the oocyte's ability to accumulate intracellular GSH during maturation, and extracellular steroid hormones and cumulus cells, affect the competence of porcine oocytes to undergo nuclear and cytoplasmic maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号