首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have monitored the patterns of activation of five muscles during flight initiation of Drosophila melanogaster: the tergotrochanteral muscle (a mesothoracic leg extensor), dorsal longitudinal muscles #3, #4 and #6 (wing depressors), and dorsal ventral muscle #Ic (a wing elevator). Stimulation of a pair of large descending interneurons, the giant fibers, activates these muscles in a stereotypic pattern and is thought to evoke escape flight initiation. To investigate the role of the giant fibers in coordinating flight initiation, we have compared the patterns of muscle activation evoked by giant fiber stimulation with those during flight initiations executed voluntarily and evoked by visual and olfactory stimuli. Visually elicited flight initiations exhibit patterns of muscle activation indistinguishable from those evoked by giant fiber stimulation. Olfactory-induced flight initiations exhibit patterns of muscle activation similar to those during voluntary flight initiations. Yet only some benzaldehyde-induced and voluntary flight initiations exhibit patterns of muscle activation similar to those evoked by giant fiber stimulation. These results indicate that visually elicited flight initiations are coordinated by the giant fiber circuit. By contrast, the giant fiber circuit alone cannot account for the patterns of muscle activation observed during the majority of olfactory-induced and voluntary flight initiations.Abbreviations DLM/DLMn dorsal longitudinal muscle/motor neuron - DVM/DVMn dorsal ventral muscle/motor neuron - GF(s) giant fiber interneuron (s) - PSI peripherally synapsing interneuron - TTM/TTMn tergotrochanteral muscle/motor neuron  相似文献   

2.
A single submaximal intramural application of rectangular stimuli (duration 0.2–0.5 msec) to an atropine-treated taenia coli muscle band evoked inhibitory postsynaptic potentials (IPSP) and a marked relaxation of the muscle band in the vast majority of muscle cells. The latency period of the IPSP was 122±16 msec; the times for a rise and fall of amplitude were 96±8 and 370±60 msec, respectively. The mean latency period of muscle relaxation was 800 msec. The latency period, and especially the amplitude of the IPSP depended on the intensity of the intramural stimulation. This indicates that one muscle cell is inhibited by several nerve fibers. IPSP evoked by threshold stimuli displayed a tendency toward summation, while the amplitude of the second and of subsequent IPSP evoked by low-frequency maximal stimuli was always less than that of the first IPSP. After periodic stimulation (frequency 10–60 impulses/min) was discontinued, a posttetanic decrease in IPSP amplitude was observed. Anodic polarization of the muscle band with a direct current raised the effectiveness of synaptic transmission, as was evidenced by the considerable increase in IPSP amplitude. When the muscle membrane was hyperpolarized with noradrenaline, IPSP inhibition was reversible. This is evidence that the unknown mediator and noradrenaline have a common ionic inhibitory mechanism.A. A. Bogomol'ts Institute of Physiology of the Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 544–551, September–October, 1970.  相似文献   

3.
In bifunctional dorsoventral muscle M-120 of the locust Locusta migratoria migratorioides three groups of fibers have been found which differ with respect to their electrophysiological properties. The evoked fast potentials in the fibers of caudal portion differed from fast potentials observed in the fibers of rostral and intermediate portions of the muscle. In the fibers of the caudal and intermediate portions of muscle, not only fast, but other depolarization potentials were also recorded which differ in the amplitude and duration, as well as the inhibitory postsynaptic potentials. It was shown that fibers in these three parts of the muscle differ in their voltage-current properties. It is concluded that different types of potentials are due to peculiarities of innervation and to structural heterogeneity of muscle fibers.  相似文献   

4.
The effect of evoked muscle tension, active muscle mass, and fiber-type composition on the pressor reflex evoked by muscular contraction was examined in decerebrate and anesthetized cats. Muscular contraction was induced by stimulating the L7 and S1 ventral roots with 0.1-ms duration pulses three times motor threshold at various frequencies. The experiments were designed to isolate the variable under study as much as possible and included the use of selectively denervated preparations to limit contractions to specific muscles. It was found that altering the evoked tension by varying the resting muscle length had commensurate effects on the pressor reflex (greater evoked tension caused a larger reflex). In addition it was found that changing the amount of active muscle mass caused similar changes in the reflex (the smaller the muscle mass, the smaller the reflex). Finally, it was found that contrary to other accounts, pressor reflexes could be evoked by activation of the slow-twitch muscle soleus, composed exclusively of red (type I) fibers.  相似文献   

5.
The effects of direct applications of GABA (gamma-aminobutyric acid) and the GABAA agonist, THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the excitability of myelinated axons of individual dorsal and ventral spinal roots (lumbar VI and (or) VII) of the isolated bullfrog peripheral nerve are reported. Increases evoked by the GABA agonists (0.01-10 mM) in the amplitude of half-maximal A-fiber compound action potentials indicate the presence of depolarizing responses with apparently greater localization to the dorsal roots, and a sensitivity to GABA twofold greater than that for THIP. The changes evoked by GABA and THIP, as well as potassium have components that closely resemble those of sensory and motor fibers in the more distal, desheathed nerve bundle but are smaller and delayed, differences attributable to a closely attached root sheath that acts as a diffusion barrier. These results confirm the likely existence of GABAA receptors on both dorsal and ventral spinal roots.  相似文献   

6.
Excitability changes evoked by the inhibitory neurotransmitter, GABA (gamma-aminobutyric acid) in myelinated axons of dorsal and ventral roots of the isolated bullfrog sciatic nerve were compared in the absence and presence of K+ channel blockers. Half-maximal A-fiber responses to a 0.5-Hz stimulation of the whole nerve were recorded from individual roots. Direct applications of Ringer with raised K+ levels to the site of stimulation caused increases in excitability of both dorsal and ventral root fibers, which resembled those evoked in the ventral root by the GABA agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]ol). The increases in dorsal root fiber responses produced by GABA were depressed by tetraethylammonium (TEA) (3 mM), 4-aminopyridine (4-AP) (50 microM), Cs (2 mM), and Ba (1 mM). Ventral root fibers were less consistently affected. The early component of GABA-evoked excitability increases was depressed by 4-AP, Cs, and Ba, but greatly augmented by TEA. THIP-evoked changes in the excitability of the dorsal and ventral root fibers were, respectively, depressed and enhanced by TEA. The augmenting effect of TEA on the early component of GABA agonist effects on the ventral root fibers is attributed to their high resting K+ conductance and the presence of a slowly inactivating, fast K+ current (If1). The depressant effects of K+ channel blockade on depolarizing components of agonist-evoked changes in dorsal and ventral root responses indicate interference with release and (or) sensitivity to K+ and a possible contribution from a mechanism involving voltage-dependent delayed rectifier K+ currents.  相似文献   

7.
Fibers of the metathoracic extensor tibia muscle of the cricket Teleogryllus oceanicus are innervated by a slow excitatory axon (slow fibers), a fast excitatory axon (fast fibers), or by both slow and fast axons (dual fibers). Sectioning metathoracic nerve 5 removes the fast axon input to the muscle but not that of the slow axon. Following such partial denervation, the mechanical responses initiated by the slow axon increase progressively for at least 30 days; twitch tensions reach 5–10 times those of control muscles and tetanic tensions 10–30 times control values. After sectioning nerve 5, resting membrane potentials decrease in those fibers which originally received fast axon input and the input resistance of all fiber types increases, including that of slow fibers which are not innervated through nerve 5. Excitatory junctional potentials (EJPs) initiated by the slow axon become larger following partial denervation, accounting in part for the larger contraction amplitudes. The increased input resistance is adequate to account for the larger EJPs in slow fibers but not for the proportionally greater increase in EJP amplitude in fibers which were formerly dually innervated. The change in EJP amplitude is abrupt in slow fibers and gradual in formerly dual fibers.  相似文献   

8.
Singing muscles of the katydid, Neoconocephalus robustus (Insecta, Tettigoniidae) are neurogenic, yet perform at contraction-relaxation frequencies as high as 212 Hz (Josephson and Halverson, '71). The mechanical and electrical responses of different bands of one of these muscles (the dorsal longitudinal muscle, DLM) has been examined with respect to ultrastructural features of each part which may be related to muscle performance. The DLM is composed of three bands and is innervated by four motoneurones. The cell bodies of three of these motoneurones occur ipsilaterally in the prothroracic ganglion; the cell body of the other motoneurone is contralateral in the mesothoracic ganglion. Three of the motoneurones (as yet unidentified fast axons) initiate extraordinarily fast twitches (rise time equal 7.3 msec, half duration equals 14.3 msec, 25 C), the fourth (an unidentified slower axon) evokes twitches which are considerably slower (rise time equals 18.9 msec, half duration equals 5.10 msec). Whereas the ventral and medial bands of the muscle are innervated only by fast axons (some fibers of the medial band are doubly innervated), the dorsal band is innervated by both a fast axon and the slower axon. A few fibers of the dorsal band are doubly innervated. The structure of fibers from the ventral and medial bands is very similar, with short sarcomeres (4.0 and 4.3 mum, respectively) and thin strap-like myofibrils delineated by well-developed sarcoplasmic reticulum (SR). Twenty-four percent of the volume of ventral band fibers is SR and the diffusion distance from SR to the center of the adjacent myofibril averages 0.083 mum. Twenty percent of the medial band fiber volume is SR, with a diffusion distance of 0.118 mum. Ventral and medial band fibers contain about 40% mitochondria, and 33% myofibrils. The dorsal band fibers have longer sarcomeres (9.5 mum), and only 10% of the fiber volume is SR. The muscle fibrils of the dorsal band are larger and consequently the diffusion distance is greater (0.227 mum) than in the ventral and medial bands. Mitochondria comprise 23% of the volume of dorsal band fibers. Most dorsal band mitochondria are aggregated into distinct clumps. Although some dorsal band fibers are innervated by a fast axon and some by the slower axon, the dorsal band fibers are structurally homogeneous, suggesting that neurotrophic effects are not important in maintaining the structure of dorsal band fibers. The mechanical-electrical performance and ultrastructure of the ventral and medial bands suggest their roll as fast, metabolically active but weak muscles, used in singing; the dorsal band as a slower but stronger muscle, perhaps involved in postural movements of the wing during singing.  相似文献   

9.
新生大鼠离体脊髓薄片侧角中间外侧核细胞的电生理特性   总被引:1,自引:0,他引:1  
祝延  马如纯 《生理学报》1989,41(1):63-69
在新生大鼠离体脊髓薄片的中间外侧核作细胞内记录,研究细胞膜的静态与动态电生理特性。细胞的静息电位(RP)变动于-46—-70mV,膜的输入阻抗为108.3±67.9MΩ(X±SD,下同),时间常数9.9±5.6ms,膜电容138.6±124.2pF。用去极化电流进行细胞内刺激时,大部份细胞(85.4%)能产生高频率连续发放,其余细胞(15.6%)仅产生初始单个发放。胞内直接刺激引起的动作电位(AP)幅度为63.4±9.0mV,时程2.4±0.6ms,阈电位水平在RP基础上去极18.7±6.2mV。大部份细胞的锋电位后存在明显的超极化后电位,其幅度为5.1±2.7mV、持续90±31.8ms。刺激背根可在记录细胞引起EPSP或顺向AP,少数细胞尚出现IPSP。而刺激腹根则可引起逆向AP。  相似文献   

10.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by &#110 motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

11.
Lange AB  Cheung IL 《Peptides》1999,20(12):166-1418
The external ventral protractor muscle of the VIIth abdominal segment, M234, is a skeletal muscle that possesses receptors that recognize a range of FMRFamide-related peptides and application of these peptides results in an increase in the amplitude of neurally evoked contractions with little or no effect on basal tonus. FLRFamide itself has the same biologic activity as the extended peptides, whereas truncation to LRFamide or RFamide results in a peptide with no biologic activity. The receptors recognizing these extended FLRFamides, which include SchistoFLRFamide, seem to be different from the SchistoFLRFamide receptors found on locust oviduct visceral muscle. SchistoFLRFamide and the non-peptide mimetic, benzethonium chloride (Bztc), increase the frequency and amplitude of miniature endplate potentials, increase the amplitude of neurally evoked excitatory junction potentials, and result in a hyperpolarisation of resting membrane potential. Bztc, however, also abolishes the active membrane response that may explain its ability to decrease neurally evoked contractions.  相似文献   

12.
Clark J  Lange AB 《Peptides》2002,23(4):613-619
The association of FMRFamide-related peptides (FaRPs) with the spermatheca of Locusta migratoria was demonstrated using radioimmunoassay and immunohistochemical techniques. The physiological effects of various FaRPs on the neurally evoked contractions of the spermatheca were also examined. FMRFamide-like immunoreactivity (FLI) was demonstrated in processes and cell bodies situated in the VIIIth (terminal) abdominal ganglion. These included an anterior, central and posterior pair of ventral cell bodies positioned near the midline of the ganglion, in addition to two bilaterally paired dorsal cell bodies in the posterior region of the VIIIth abdominal ganglion. Two axons displaying FLI proceed down the ventral ovipositor nerve (VON) and into the receptaculum seminis nerve which innervates the anterior regions of the spermatheca. FLI was also noted in processes on the spermathecal muscle with the highest density occurring on the spermathecal sac and coil duct. FaRPs applied to the spermathecal muscle included GQERNFLRFamide, NFIRFamide, ADDRNFIRFamide, YGGFMRFamide, FMRFamide, ADVGHVFLRFamide and SchistoFLRFamide (PDVDHVFLRFamide). Dose-dependent physiological effects were only noted for FMRFamide, ADVGHVFLRFamide and SchistoFLRFamide. FMRFamide led to a dose-dependent increase in the amplitude of neurally evoked contractions with a threshold of approximately 5 x 10(-7) M. SchistoFLRFamide, and ADVGHVFLRFamide, had an inhibitory effect, decreasing the amplitude of neurally evoked spermathecal contractions.  相似文献   

13.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by gamma motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

14.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

15.
The properties of the penis retractor muscle of Aplysia have been studied using intracellular, sucrose gap and tension recording. The fibers are of the invertebrate smooth muscle type and exhibit slow contractions which occur spontaneously or in response to stretch in isolated preparations. Individual muscle fibers are innervated by excitatory and inhibitory axons. A variety of sizes of excitatory and inhibitory junctional potentials can be recorded from them. The innervation is probably diffuse and functionally polyneuronal. The fibers are electrically coupled, permeable to potassium and chloride at rest, and exhibit no overshooting active responses. The muscle shows graded responses of depolarization and contraction proportional to strength of nerve stimulation. Facilitation and depression of junctional potentials are seen with various frequencies of nerve stimulation. Post-tetanic potentiation occurs with nerve stimulation at frequencies from 2 to 50 Hz and is suppressed in the presence of increased extracellular calcium concentrations.  相似文献   

16.
The effects of Ba2+ were studied in vitro on the isolated frog spinal cord. Ba2+ (25 microM-5 mM) caused a concentration-dependent depolarization of ventral (VR) and dorsal (DR) roots. TTX and Mg2+ substantially reduced the depolarization suggesting that interneuronal effects were involved. Ba2+ (25-500 microM) markedly increased the frequency and duration of spontaneous VR and DR potentials and substantially enhanced the duration (and frequently the amplitude) of VR and DR potentials evoked by DR stimulation. Higher concentrations of Ba2+ (1-5 mM) reduced both spontaneous and evoked potentials. Ba2+ (25-500 microM) enhanced the amount of K+ released by a DR volley and by application of L-glutamate and L-aspartate. The cation reduced VR and DR root depolarizations produced by elevated [K+]0. VR potentials induced by L-glutamate, L-aspartate, GABA and glycine and DR depolarizations caused by GABA were reduced by Ba2+. These results show that Ba2+ has complex actions on reflex transmission, interneuronal activity, the postsynaptic actions of excitatory and inhibitory amino acids and the evoked release of K+.  相似文献   

17.
The characteristics of long-duration inhibitory postsynaptic potentials (1-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from an in vitro slice preparation. Stimulation with suprathreshold intensities evoked 1-IPSPs with typical durations of 600-900 msec at resting membrane potential. Conductance increases of 15-60% were measured at the peak amplitude of 1-IPSPs (150-250 msec poststimulus). The duration of the conductance increases during 1-IPSPs displayed a significant voltage dependence, decreasing as the membrane potential was depolarized and increasing with hyperpolarization. The reversal potential of 1-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that 1-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance. 1-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during 1-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes. 1-IPSPs are not blocked by bicuculline but are blocked by baclofen.  相似文献   

18.
The site and mode of action of serotonin on locomotion were investigated in the parasitic nematode Ascaris suum. Injection of serotonin into Ascaris immediately caused paralysis in animals that were generating locomotory waveforms. Injected serotonin also increased body length and decreased the number of propagating body waves. Similar injections into the male tail produced a ventral tail curl. Injection of N-acetyl-serotonin had no effect on the generation of locomotory waveforms, but increased the body length and decreased the number of body waves in the waveform. Other biogenic amines were also tested but were much less potent.Serotonin decreased the amplitude of a submaximal acetylcholine-induced muscle contraction and increased the time to attain this contraction. The time course of this effect on the response to ACh was much slower than the action of injected serotonin on locomotory waveforms, suggesting that additional elements are involved in the action of serotonin on locomotory behavior.Serotonin abolished spontaneous slow potentials in VI motor neurons and decreased the frequency of EPSPs in DE2 motor neurons, probably by a pre-synaptic mechanism. In the male tail, serotonin depolarized the male-specific transverse ventral muscle cells, but did not affect either dorsal or ventral longitudinal muscle cells.Abbreviations ACh acetylcholine - cAMP cyclic adenosine monophosphate - DA dopamine - DE dorsal excitatory motor neuron - DI dorsal inhibitory motor neuron - DM dorsal muscle - ELP egg-laying pore - EPSP excitatory post synaptic potential - GABA gamma aminobutyric acid - HRB head restricted behavior - IPSP inhibitory post synaptic potential - 5-HT 5-hydroxytryptamine, serotonin - NA-5-HT N-acetyl-5-hydroxytryptamine - NE norepinephrine - OA octopamine - PBS phosphate buffered saline - PCF pseudocoelomic fluid - tVM malespecific transverse ventral muscle - TRYP tryptamine - VI ventral inhibitory motor neuron  相似文献   

19.
Properties of divalent cation potentials carried by either Sr2+ or Ca2+ ions in Na+-free, TEA-Ringer solution were characterized in identified neurons of two species of leeches (Macrobdella and Haementeria). In Macrobdella, the overshoot of the potentials varied logarithmically with [Sr2+]0 (28.5 mV per 10-fold change). The overshoot, Vmax, and duration of the potentials increased with increasing divalent cation concentration and saturated at about 20 to 30 mM [Sr2+]0. The Vmax, amplitude, and duration of the potentials were reversibly blocked by Co2+ and Mn2+. The block by Mn2+ could be well-fitted by a reverse Langmuir-curve with an apparent KI of 100 micromolar. The local anesthetic procaine also reversibly inhibited the Vmax and duration of the potentials. The inhibition was greater at alkaline pH suggesting that procaine blocks the calcium channel from inside the membrane. The identified leech neurons examined in Macrobdella varied considerably in their ability to sustain somatic divalent cation potentials. Stimulation of T cells and most motoneurons produced no or only weak potentials, whereas stimulation of Retzius, N, Nut, and AP cells evoked overshooting potentials of several seconds' duration. Stimulation of the ALG cell of Haementeria in normal Ringer solution evoked a slowly-rising, purely Ca2+-dependent potential of approximately 100 ms duration. This response was TTX-resistant, unaffected by complete removal of Na+ from the Ringer solution, and abolished by 1 mM Mn2+. The overshoot varied logarithmically with a slope of 28 mV/decade change in [Ca2+]0.  相似文献   

20.
The dorsal cord, dorsal root, and focal potentials in response to peripheral nerve stimulation were investigated in rats with local depression of inhibition in the left or right half of the lumbar segments produced by the action of tetanus toxin. The investigation was carried out at the stage of poisoning when excitation of the neuron population with disturbed inhibition caused generalized excitation of spinal and bulbar motoneurons. Experiments on spinal animals showed that if a cutaneous nerve is stimulated on the side affected by the toxin these responses have a greater amplitude and a much longer duration than those evoked by stimulation of the opposite nerve or responses in healthy rats. The maximal increase in amplitude and duration of the negative component of the focal potential corresponding to the time of the increased P wave of the dorsal cord potential was found in the ventral quadrant on the side affected by the toxin. Besides evoked focal potentials, spontaneous rhythmic negative waves also were recorded in this area. The mechanisms of spread of seizure activity from the focus of depressed inhibition are discussed and the structures generating spreading seizure activity are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号