首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pannexin通道蛋白功能研究概述   总被引:1,自引:0,他引:1  
Pannexin基因是2000年发现的缝隙连接蛋白家族新成员。目前研究表明,Pannexin蛋白(Px)可以在细胞膜上组成半通道或在细胞间形成缝隙连接通道,介导细胞内ATP释放、细胞间钙波传递、味觉感受、血管血流调节以及免疫应答等多种生理功能。在病理状态下,Px参与炎症、肿瘤、脑缺血、癫痫以及心衰等重大疾病发生、发展。随着Pannexin研究领域的深入,其生理病理状态下的更多重大功能将被阐释。  相似文献   

2.
26S蛋白酶体是真核细胞内负责蛋白质降解的主要分子机器,通过特异性降解目的蛋白质,几乎参与了生物体的绝大多数生命活动.26S蛋白酶体在结构上可分为19S调节颗粒和20S核心颗粒两部分.19S调节颗粒负责识别带有泛素链标记的蛋白质底物及对其进行去折叠,并最终将去折叠的蛋白质底物传送至20S核心颗粒中进行降解.由于26S蛋白酶体的结构组成复杂,分子量十分巨大,现有的X-ray技术和NMR技术对其完整结构的解析都无能为力,仅能解析出部分单个蛋白成员或分子量较低的亚复合物晶体结构.而冷冻电镜技术在相当一段时间内处于发展的初级阶段,导致其三维结构的研究进展曾经十分缓慢,严重阻碍了人们对其结构和功能的了解.近年来,随着在X-ray技术领域对大分子复合物结构解析的经验积累和冷冻电镜技术领域的技术革命,完整的26S蛋白酶体三维结构解析取得了飞速的发展.本文回顾了近几年在26S蛋白酶体结构生物学领域的重要进展,并展望了该领域未来的发展及面临的挑战.  相似文献   

3.
最近,冷冻电镜技术的突破引起结构生物学发生了革命。这一革命导致2017年诺贝尔化学奖授予对冷冻电镜技术发展做出开创性贡献的3位科学家Jacques Dubochet、Joachim Frank和Richard Henderson。本文将综述冷冻电镜的发展历程,导致结构生物学革命的冷冻电镜关键技术,包括电镜、图像记录装置和图像处理算法方面的突破,以及中国科学家应用冷冻电镜取得的重要科学成就,涵盖基因表达/调控、蛋白质合成/降解、膜蛋白、免疫、病毒等相关蛋白复合体。最后,对冷冻电镜的未来发展方向进行展望。  相似文献   

4.
白细胞介素-1(IL-1)是一种作用非常广泛的多肽生长因子,了解IL-1结构与功能的关系对阐明其作用是很有必要的。IL-1β含12条反向平行β折叠链,其三维结构象四面体,IL-1α的二级结构和高级结构与IL-1β相似;IL-1的一些子肽和氨基酸残基在IL-1与受体的结合和IL-1功能的发挥中起着重要作用。本主要就IL-1的二级结构与三级结构,IL-1结构与功能关系的研究进展作一简要综述。  相似文献   

5.
肝素结构与功能的研究进展   总被引:17,自引:0,他引:17  
肝素是一类结构异常复杂的糖胺聚糖,与此相对应的是其多种生物学功能。除了经典的抗凝血及其相关的抗血栓生成以外,肝素还具有抗平滑肌细胞增殖,抗炎症,抗肿瘤及抗病毒等,并且这些生物活性同抗凝活性无关,而同肝素的特异结构密切相关。  相似文献   

6.
肝素是一类结构异常复杂的糖胺聚糖,与此相对应的是其多种生物学功能。除了经典的抗凝血及其相关的抗血拴生成以外,肝素还具有抗平滑肌细胞增殖、抗炎症、抗肿瘤及抗病毒等,并且这些生物活性同抗凝活性无关,而同肝素的特异结构密切相关。本文综述了肝素的多种生物学功能、作用机制及结构与功能的关系。  相似文献   

7.
SmpB是一类普遍存在于细菌中的小RNA结合蛋白。研究表明SmpB除了在反式翻译中起着辅助tmRNA分子拯救滞留核糖体的作用,其也可以作为RNA分子伴侣调节体内RpoS的表达,以及具有直接调控RNase R及双组份系统的功能。SmpB参与的调控作用对于细菌蛋白质合成质量控制、致病菌中毒力系统调控、维持机体正常生长及发育等过程具有关键作用。本综述主要从SmpB蛋白结构及其对RNA、蛋白质调控功能等方面进行论述,以期对发掘细菌性疾病治疗靶点,研发新型抗生素,提供新的方向和思路。  相似文献   

8.
胰岛素样生长因子1的结构与功能研究进展   总被引:4,自引:0,他引:4  
胰岛素样生长因子1(IGF1)是一种多功能细胞调控因子.它的结构特征为其促生长和物质代谢功能提供依据.集中介绍了IGF1的三维结构、IGF1与相关受体和结合蛋白的结合区以及二硫键在蛋白质折叠中的重要作用.  相似文献   

9.
P2X4受体是P2X受体家族的成员。目前,已从人、大鼠、小鼠、鸡胚和非洲爪蟾的组织中获得了全长cDNA。P2X4受体分布广泛,在被ATP及其同系物激活后,引起细胞内钙离子浓度显升高,将信号传递给下游的信号分子。  相似文献   

10.
11.
Pannexin 1 (Panx1) is a ubiquitously expressed protein forming large conductance channels that are central to many distinct inflammation and injury responses. There is accumulating evidence showing ATP released from Panx1 channels, as well as metabolites, provide effective paracrine and autocrine signaling molecules that regulate different elements of the injury response. As channels with a broad range of permselectivity, Panx1 channels mediate the secretion and uptake of multiple solutes, ranging from calcium to bacterial derived molecules. In this review, we describe how Panx1 functions in response to different pro-inflammatory stimuli, focusing mainly on signaling coordinated by the vasculature. How Panx1 mediates ATP release by injured cells is also discussed. The ability of Panx1 to serve as a central component of many diverse physiologic responses has proven to be critically dependent on the context of expression, post-translational modification, interacting partners, and the mode of stimulation.  相似文献   

12.
Pannexin 1 (Panx1) channels are generally represented as non-selective, large-pore channels that release ATP. Emerging roles have been described for Panx1 in mediating purinergic signaling in the normal nervous, cardiovascular, and immune systems, where they may be activated by mechanical stress, ionotropic and metabotropic receptor signaling, and via proteolytic cleavage of the Panx1 C-terminus. Panx1 channels are widely expressed in various cell types, and it is now thought that targeting these channels therapeutically may be beneficial in a number of pathophysiological contexts, such as asthma, atherosclerosis, hypertension, and ischemic-induced seizures. Even as interest in Panx1 channels is burgeoning, some of their basic properties, mechanisms of modulation, and proposed functions remain controversial, with recent reports challenging some long-held views regarding Panx1 channels. In this brief review, we summarize some well-established features of Panx1 channels; we then address some current confounding issues surrounding Panx1 channels, especially with respect to intrinsic channel properties, in order to raise awareness of these unsettled issues for future research.  相似文献   

13.
Pannexins constitute a family of three glycoproteins (Panx1, -2, and -3) forming single membrane channels. Recent work demonstrated that Panx1 is expressed in skeletal muscle and involved in the potentiation of contraction. However, Panxs functions in skeletal muscle cell differentiation, and proliferation had yet to be assessed. We show here that Panx1 and Panx3, but not Panx2, are present in human and rodent skeletal muscle, and their various species are differentially expressed in fetal versus adult human skeletal muscle tissue. Panx1 levels were very low in undifferentiated human primary skeletal muscle cells and myoblasts (HSMM) but increased drastically during differentiation and became the main Panx expressed in differentiated cells. Using HSMM, we found that Panx1 expression promotes this process, whereas it was impaired in the presence of probenecid or carbenoxolone. As for Panx3, its lower molecular weight species were prominent in adult skeletal muscle but very low in the fetal tissue and in undifferentiated skeletal muscle cells and myoblasts. Its overexpression (∼43-kDa species) induced HSMM differentiation and also inhibited their proliferation. On the other hand, a ∼70-kDa immunoreactive species of Panx3, likely glycosylated, sialylated, and phosphorylated, was highly expressed in proliferative myoblasts but strikingly down-regulated during their differentiation. Reduction of its endogenous expression using two Panx3 shRNAs significantly inhibited HSMM proliferation without triggering their differentiation. In summary, our results demonstrate that Panx1 and Panx3 are co-expressed in human skeletal muscle myoblasts and play a pivotal role in dictating the proliferation and differentiation status of these cells.  相似文献   

14.
S-Nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1–1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1C40A, Panx1C346A, and Panx1C426A). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1C40A/C346A) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.  相似文献   

15.
Purinergic signaling mediated by ATP and its metabolites contributes to various brain physiological processes as well as to several pathological conditions, including neurodegenerative and neurological disorders, such as epilepsy. Among the different ATP release pathways, pannexin 1 channels represent one of the major conduits being primarily activated in pathological contexts. Investigations on in vitro and in vivo models of epileptiform activity and seizures in mice and human tissues revealed pannexin 1 involvement in aberrant network activity and epilepsy, and highlighted that pannexin 1 exerts a complex role. Pannexin 1 can indeed either sustain seizures through release of ATP that can directly activate purinergic receptors, or tune down epileptic activity via ATP-derived adenosine that decreases neuronal excitability. Interestingly, in-depth analysis of the literature unveils that this dichotomy is only apparent, as it depends on the model of seizure induction and the type of evoked epileptiform activity, two factors that can differentially activate pannexin 1 channels and trigger distinct intracellular signaling cascades. Here, we review the general properties and ATP permeability of pannexin 1 channels, and discuss their impact on acute epileptiform activity and chronic epilepsy according to the regime of activity and disease state. These data pave the way for the development of new antiepileptic strategies selectively targeting pannexin 1 channels in a context-dependent manner.  相似文献   

16.
Recruitment of monocytes in the liver is a key pathogenic feature of hepatic inflammation in nonalcoholic steatohepatitis (NASH), but the mechanisms involved are poorly understood. Here, we studied migration of human monocytes in response to supernatants obtained from liver cells after inducing lipoapoptosis with saturated free fatty acids (FFA). Lipoapoptotic supernatants stimulated monocyte migration with the magnitude similar to a monocyte chemoattractant protein, CCL2 (MCP-1). Inhibition of c-Jun NH2-terminal kinase (JNK) in liver cells with SP600125 blocked migration of monocytes in a dose-dependent manner, indicating that JNK stimulates release of chemoattractants in lipoapoptosis. Notably, treatment of supernatants with Apyrase to remove ATP potently inhibited migration of THP-1 monocytes and partially blocked migration of primary human monocytes. Inhibition of the CCL2 receptor (CCR2) on THP-1 monocytes with RS102895, a specific CCR2 inhibitor, did not block migration induced by lipoapoptotic supernatants. Consistent with these findings, lipoapoptosis stimulated pathophysiological extracellular ATP (eATP) release that increased supernatant eATP concentration from 5 to ~60 nM. Importantly, inhibition of Panx1 expression in liver cells with short hairpin RNA (shRNA) decreased supernatant eATP concentration and inhibited monocyte migration, indicating that monocyte migration is mediated in part by Panx1-dependent eATP release. Moreover, JNK inhibition decreased supernatant eATP concentration and inhibited Pannexin1 activation, as determined by YoPro-1 uptake in liver cells in a dose-dependent manner. These results suggest that JNK regulates activation of Panx1 channels, and provide evidence that Pannexin1-dependent pathophysiological eATP release in lipoapoptosis is capable of stimulating migration of human monocytes, and may participate in the recruitment of monocytes in chronic liver injury induced by saturated FFA.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9456-5) contains supplementary material, which is available to authorized users.  相似文献   

17.
Pannexin 3 (PANX3) is a member of the pannexin family of single membrane channel-forming glycoproteins. Originally thought to have a limited localization in cartilage, bone, and skin, PANX3 has now been detected in a variety of other tissues including skeletal muscle, mammary glands, the male reproductive tract, the cochlea, blood vessels, small intestines, teeth, and the vomeronasal organ. In many cell types of the musculoskeletal system, such as osteoblasts, chondrocytes, and odontoblasts, PANX3 has been shown to regulate the balance of proliferation and differentiation. PANX3 can be induced during progenitor cell differentiation, functioning at the cell surface as a conduit for ATP and/or in the endoplasmic reticulum as a calcium leak channel. Evidence in osteoblasts and monocytes also highlight a role for PANX3 in purinergic signalling through its function as an ATP release channel. PANX3 is critical in the development and ageing of bone and cartilage, with its levels temporally regulated in other tissues such as skeletal muscle, skin, and the cochlea. In diseases such as osteoarthritis and intervertebral disc degeneration, PANX3 can have either protective or detrimental roles depending on if the disease is age-related or injury-induced. This review will discuss PANX3 function in tissue growth and regeneration, its role in cellular differentiation, and how it becomes dysregulated in disease conditions such as obesity, Duchenne’s muscular dystrophy, osteosarcoma, and non-melanoma skin cancer, where most of the findings on PANX3 function can be attributed to the characterization of Panx3 KO mouse models.  相似文献   

18.
蛋白酶体结构和功能研究进展   总被引:3,自引:0,他引:3  
蛋白酶体是真核细胞内依赖ATP的蛋白质水解途径的重要成分,负责大多数细胞内蛋白质的降解. 20 S蛋白酶体有多种肽酶活性,其活性位点为Thr. 19 S复合物与20 S蛋白酶体结合成为26 S复合物,能降解泛素化蛋白.近几年来,蛋白酶体的分子组成、亚基、生化机理、胞内功能等方面的研究取得了明显进展.  相似文献   

19.
A large conductance (~300 picosiemens) channel (LCC) of unknown molecular identity, activated by Ca(2+) release from the sarcoplasmic reticulum, particularly when augmented by caffeine, has been described previously in isolated cardiac myocytes. A potential candidate for this channel is pannexin 1 (Panx1), which has been shown to form large ion channels when expressed in Xenopus oocytes and mammalian cells. Panx1 function is implicated in ATP-mediated auto-/paracrine signaling, and a crucial role in several cell death pathways has been suggested. Here, we demonstrate that after culturing for 4 days LCC activity is no longer detected in myocytes but can be rescued by adenoviral gene transfer of Panx1. Endogenous LCCs and those related to expression of Panx1 share key pharmacological properties previously used for identifying and characterizing Panx1 channels. These data demonstrate that Panx1 constitutes the LCC of cardiac myocytes. Sporadic openings of single Panx1 channels in the absence of Ca(2+) release can trigger action potentials, suggesting that Panx1 channels potentially promote arrhythmogenic activities.  相似文献   

20.
Pannexins (Panxs) are a multifaceted family of ion and metabolite channels that play key roles in a number of physiological and pathophysiological settings. These single membrane large-pore channels exhibit a variety of tissue, cell type, and subcellular distributions. The lifecycles of Panxs are complex, yet must be understood to accurately target these proteins for future therapeutic use. Here we review the basics of Panx function and localization, and then analyze the recent advances in knowledge regarding Panx trafficking. We examine several intrinsic features of Panxs including specific post-translational modifications, the divergent C-termini, and oligomerization, all of which contribute to Panx anterograde transport pathways. Further, we examine the potential influence of extrinsic factors, such as protein-protein interactions, on Panx trafficking. Finally, we highlight what is currently known with respect to Panx internalization and retrograde transport, and present new data illustrating Panx1 internalization following an activating stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号